{"title":"Identification of Genetic Relationships and Group Structure Analysis of Yanqi Horses.","authors":"Yaru Wang, Chi Tang, Pengfei Xue, Na Yang, Xiaoyuan Sun, Khizat Serik, Tolegen Assanbayer, Malika Shamekova, Zhassulan Kozhanov, Zagipa Sapakhova, Jurakulov Kobil Khurramovich, Xiaoling Zhou, Iskhan Kairat, Gemingguli Muhatai","doi":"10.3390/genes16030294","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The Yanqi horse is a distinguished local breed in China, known for its robust physique and strong adaptability. However, due to insufficient breeding populations and a loosely structured breeding system, the number of Yanqi horses has been declining annually. To protect its genetic resources and develop scientific breeding strategies, this study aimed to analyze the genetic diversity, parentage relationships, and genetic structure of the Yanqi horse conservation population using microsatellite markers. <b>Materials and Methods:</b> A total of 117 Yanqi horses were selected for genotyping analysis using 16 microsatellite markers. Genetic diversity parameters (e.g., allele number, heterozygosity, F-statistics) were calculated using GeneAIEX (v.6.503) and Fstat software (v.2.9.4). Parentage analysis was conducted using Cervus software. Bayesian clustering analysis was performed using STRUCTURE software (v.2.3.4), and a phylogenetic tree was constructed based on Nei's genetic distance to reveal the population genetic structure. <b>Results:</b> A total of 191 alleles were detected, with an average allele number of 11.969, observed heterozygosity of 0.481, and expected heterozygosity of 0.787. Parentage testing showed a cumulative exclusion probability (CEP) of 0.9652999 when one parent's genotype was known and 0.9996999 when both parents' genotypes were known, achieving an accuracy of 99%. Genetic differentiation analysis revealed moderate genetic divergence among populations (FST = 0.128) and moderate inbreeding levels (FIS = 0.396). Bayesian clustering analysis (K = 4) indicated that the Yanqi horse population could be divided into four genetic clusters, reflecting the impact of geographical isolation on genetic structure. <b>Conclusions:</b> The Yanqi horse conservation population exhibits moderate genetic diversity, high accuracy in parentage identification, and moderate genetic differentiation and inbreeding. The findings provide a scientific basis for the conservation and sustainable utilization of Yanqi horse genetic resources. Future efforts should focus on strengthening conservation measures, optimizing breeding strategies, and further investigating the genetic background using genomic technologies to ensure the sustainable development of the Yanqi horse population.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16030294","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: The Yanqi horse is a distinguished local breed in China, known for its robust physique and strong adaptability. However, due to insufficient breeding populations and a loosely structured breeding system, the number of Yanqi horses has been declining annually. To protect its genetic resources and develop scientific breeding strategies, this study aimed to analyze the genetic diversity, parentage relationships, and genetic structure of the Yanqi horse conservation population using microsatellite markers. Materials and Methods: A total of 117 Yanqi horses were selected for genotyping analysis using 16 microsatellite markers. Genetic diversity parameters (e.g., allele number, heterozygosity, F-statistics) were calculated using GeneAIEX (v.6.503) and Fstat software (v.2.9.4). Parentage analysis was conducted using Cervus software. Bayesian clustering analysis was performed using STRUCTURE software (v.2.3.4), and a phylogenetic tree was constructed based on Nei's genetic distance to reveal the population genetic structure. Results: A total of 191 alleles were detected, with an average allele number of 11.969, observed heterozygosity of 0.481, and expected heterozygosity of 0.787. Parentage testing showed a cumulative exclusion probability (CEP) of 0.9652999 when one parent's genotype was known and 0.9996999 when both parents' genotypes were known, achieving an accuracy of 99%. Genetic differentiation analysis revealed moderate genetic divergence among populations (FST = 0.128) and moderate inbreeding levels (FIS = 0.396). Bayesian clustering analysis (K = 4) indicated that the Yanqi horse population could be divided into four genetic clusters, reflecting the impact of geographical isolation on genetic structure. Conclusions: The Yanqi horse conservation population exhibits moderate genetic diversity, high accuracy in parentage identification, and moderate genetic differentiation and inbreeding. The findings provide a scientific basis for the conservation and sustainable utilization of Yanqi horse genetic resources. Future efforts should focus on strengthening conservation measures, optimizing breeding strategies, and further investigating the genetic background using genomic technologies to ensure the sustainable development of the Yanqi horse population.
期刊介绍:
Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.