Identification of Genetic Relationships and Group Structure Analysis of Yanqi Horses.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Genes Pub Date : 2025-02-27 DOI:10.3390/genes16030294
Yaru Wang, Chi Tang, Pengfei Xue, Na Yang, Xiaoyuan Sun, Khizat Serik, Tolegen Assanbayer, Malika Shamekova, Zhassulan Kozhanov, Zagipa Sapakhova, Jurakulov Kobil Khurramovich, Xiaoling Zhou, Iskhan Kairat, Gemingguli Muhatai
{"title":"Identification of Genetic Relationships and Group Structure Analysis of Yanqi Horses.","authors":"Yaru Wang, Chi Tang, Pengfei Xue, Na Yang, Xiaoyuan Sun, Khizat Serik, Tolegen Assanbayer, Malika Shamekova, Zhassulan Kozhanov, Zagipa Sapakhova, Jurakulov Kobil Khurramovich, Xiaoling Zhou, Iskhan Kairat, Gemingguli Muhatai","doi":"10.3390/genes16030294","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The Yanqi horse is a distinguished local breed in China, known for its robust physique and strong adaptability. However, due to insufficient breeding populations and a loosely structured breeding system, the number of Yanqi horses has been declining annually. To protect its genetic resources and develop scientific breeding strategies, this study aimed to analyze the genetic diversity, parentage relationships, and genetic structure of the Yanqi horse conservation population using microsatellite markers. <b>Materials and Methods:</b> A total of 117 Yanqi horses were selected for genotyping analysis using 16 microsatellite markers. Genetic diversity parameters (e.g., allele number, heterozygosity, F-statistics) were calculated using GeneAIEX (v.6.503) and Fstat software (v.2.9.4). Parentage analysis was conducted using Cervus software. Bayesian clustering analysis was performed using STRUCTURE software (v.2.3.4), and a phylogenetic tree was constructed based on Nei's genetic distance to reveal the population genetic structure. <b>Results:</b> A total of 191 alleles were detected, with an average allele number of 11.969, observed heterozygosity of 0.481, and expected heterozygosity of 0.787. Parentage testing showed a cumulative exclusion probability (CEP) of 0.9652999 when one parent's genotype was known and 0.9996999 when both parents' genotypes were known, achieving an accuracy of 99%. Genetic differentiation analysis revealed moderate genetic divergence among populations (FST = 0.128) and moderate inbreeding levels (FIS = 0.396). Bayesian clustering analysis (K = 4) indicated that the Yanqi horse population could be divided into four genetic clusters, reflecting the impact of geographical isolation on genetic structure. <b>Conclusions:</b> The Yanqi horse conservation population exhibits moderate genetic diversity, high accuracy in parentage identification, and moderate genetic differentiation and inbreeding. The findings provide a scientific basis for the conservation and sustainable utilization of Yanqi horse genetic resources. Future efforts should focus on strengthening conservation measures, optimizing breeding strategies, and further investigating the genetic background using genomic technologies to ensure the sustainable development of the Yanqi horse population.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16030294","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: The Yanqi horse is a distinguished local breed in China, known for its robust physique and strong adaptability. However, due to insufficient breeding populations and a loosely structured breeding system, the number of Yanqi horses has been declining annually. To protect its genetic resources and develop scientific breeding strategies, this study aimed to analyze the genetic diversity, parentage relationships, and genetic structure of the Yanqi horse conservation population using microsatellite markers. Materials and Methods: A total of 117 Yanqi horses were selected for genotyping analysis using 16 microsatellite markers. Genetic diversity parameters (e.g., allele number, heterozygosity, F-statistics) were calculated using GeneAIEX (v.6.503) and Fstat software (v.2.9.4). Parentage analysis was conducted using Cervus software. Bayesian clustering analysis was performed using STRUCTURE software (v.2.3.4), and a phylogenetic tree was constructed based on Nei's genetic distance to reveal the population genetic structure. Results: A total of 191 alleles were detected, with an average allele number of 11.969, observed heterozygosity of 0.481, and expected heterozygosity of 0.787. Parentage testing showed a cumulative exclusion probability (CEP) of 0.9652999 when one parent's genotype was known and 0.9996999 when both parents' genotypes were known, achieving an accuracy of 99%. Genetic differentiation analysis revealed moderate genetic divergence among populations (FST = 0.128) and moderate inbreeding levels (FIS = 0.396). Bayesian clustering analysis (K = 4) indicated that the Yanqi horse population could be divided into four genetic clusters, reflecting the impact of geographical isolation on genetic structure. Conclusions: The Yanqi horse conservation population exhibits moderate genetic diversity, high accuracy in parentage identification, and moderate genetic differentiation and inbreeding. The findings provide a scientific basis for the conservation and sustainable utilization of Yanqi horse genetic resources. Future efforts should focus on strengthening conservation measures, optimizing breeding strategies, and further investigating the genetic background using genomic technologies to ensure the sustainable development of the Yanqi horse population.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信