Targeting mitophagy using isoliensinine as a therapeutic strategy for renal cell carcinoma treatment

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ming-Ju Wu , Yu-Teng Chang , Tzu-Yi Chuang , Wang-Sheng Ko , Chih-Chiang Lu , Jeng-Jer Shieh
{"title":"Targeting mitophagy using isoliensinine as a therapeutic strategy for renal cell carcinoma treatment","authors":"Ming-Ju Wu ,&nbsp;Yu-Teng Chang ,&nbsp;Tzu-Yi Chuang ,&nbsp;Wang-Sheng Ko ,&nbsp;Chih-Chiang Lu ,&nbsp;Jeng-Jer Shieh","doi":"10.1016/j.freeradbiomed.2025.03.037","DOIUrl":null,"url":null,"abstract":"<div><div>Renal cell carcinoma (RCC) is a formidable and lethal form of kidney cancer, necessitating the exploration of novel therapeutic options. Isoliensinine, an alkaloid derived from lotus seed embryos, has shown promising anti-cancer properties. However, its mechanistic actions and impact on mitochondrial dynamics remain poorly understood. This research has aimed to investigate the effects of isoliensinine on RCC, as well as its potential involvement in mitophagy and mitochondrial function. In vitro experiments utilizing RCC cell lines (786-O and ACHN) have demonstrated that isoliensinine treatment significantly reduced cell viability. Moreover, isoliensinine induced an increase in cellular and mitochondrial reactive oxygen species (ROS) levels, accompanied by reduced mitochondria membrane potential, indicating an influence on mitochondrial function. Furthermore, MitoTracker staining revealed distinct mitochondrial morphologies, with isoliensinine promoting mitochondrial fission, thus supporting its role in mitochondrial dynamics. Notably, isoliensinine led to a time-dependent upregulation of mitophagy-related proteins, indicative of mitophagy activation. Of particular interest, the addition of MitoTEMPO, a potent mitochondrial ROS scavenger, effectively reversed the isoliensinine-induced upregulation of mitophagy-related protein expression and mitochondrial ROS levels. These combined results provide novel insight into the impact of isoliensinine-induced mitophagy on mitochondrial dynamics in renal carcinoma cells. Overall, the findings from this study highlight isoliensinine as a promising candidate with significant potential for further investigation and eventual clinical application in RCC therapy. Moreover, the modulation of mitochondrial dynamics, mitophagy and ROS levels through the use of isoliensinine further adds to its appeal as a potential therapeutic agent.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"233 ","pages":"Pages 132-147"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089158492500187X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Renal cell carcinoma (RCC) is a formidable and lethal form of kidney cancer, necessitating the exploration of novel therapeutic options. Isoliensinine, an alkaloid derived from lotus seed embryos, has shown promising anti-cancer properties. However, its mechanistic actions and impact on mitochondrial dynamics remain poorly understood. This research has aimed to investigate the effects of isoliensinine on RCC, as well as its potential involvement in mitophagy and mitochondrial function. In vitro experiments utilizing RCC cell lines (786-O and ACHN) have demonstrated that isoliensinine treatment significantly reduced cell viability. Moreover, isoliensinine induced an increase in cellular and mitochondrial reactive oxygen species (ROS) levels, accompanied by reduced mitochondria membrane potential, indicating an influence on mitochondrial function. Furthermore, MitoTracker staining revealed distinct mitochondrial morphologies, with isoliensinine promoting mitochondrial fission, thus supporting its role in mitochondrial dynamics. Notably, isoliensinine led to a time-dependent upregulation of mitophagy-related proteins, indicative of mitophagy activation. Of particular interest, the addition of MitoTEMPO, a potent mitochondrial ROS scavenger, effectively reversed the isoliensinine-induced upregulation of mitophagy-related protein expression and mitochondrial ROS levels. These combined results provide novel insight into the impact of isoliensinine-induced mitophagy on mitochondrial dynamics in renal carcinoma cells. Overall, the findings from this study highlight isoliensinine as a promising candidate with significant potential for further investigation and eventual clinical application in RCC therapy. Moreover, the modulation of mitochondrial dynamics, mitophagy and ROS levels through the use of isoliensinine further adds to its appeal as a potential therapeutic agent.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信