Inhibition of STAT1 alleviates oxidative damage in retinal pigment epithelial cells and exhibits neuroprotective effects in autoimmune optic neuritis by upregulating IFI30 lysosomal thiol reductase.

IF 1.7 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Siqi Ma, Jiajia Yuan
{"title":"Inhibition of STAT1 alleviates oxidative damage in retinal pigment epithelial cells and exhibits neuroprotective effects in autoimmune optic neuritis by upregulating IFI30 lysosomal thiol reductase.","authors":"Siqi Ma, Jiajia Yuan","doi":"10.5603/fhc.104300","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>. Oxidative damage-induced retinal pigment epithelial (RPE) cell apoptosis and optic nerve inflammation and demyelination are closely related to the pathogenesis of optic neuritis (ON). STAT1 has been found to be activated in the retina and optic nerve of ON rats. Our study aimed to determine whether STAT1 depletion exerts neuroprotective effects against ON in both cellular and animal models.</p><p><strong>Material and methods: </strong>. ARPE-19 cells were stimulated by H₂O₂ to induce oxidative stress, followed by STAT1 and IFI30 silencing. CCK-8 and flow cytometry assays assessed ARPE-19 cell viability and apoptosis. RT-qPCR, Western blotting, DCFH-DA staining, and commercial kits detected the levels of STAT1, IFI30, apoptosis markers, and antioxidant/oxidative markers. CHIP and luciferase reporter assays validated the binding between STAT1 and IFI30 promoter. Female C57BL/6 mice were immunised with myelin oligodendrocyte glycoprotein (MOG) peptide (MOG35-55) to induce experimental autoimmune encephalomyelitis, an animal model of ON. Optic nerve inflammation, demyelination, axonal loss, and retinalganglion cell (RGC) apoptosis in EAE mice after STAT1 knockdown were evaluated via haematoxylin and eosin, luxol fast blue, immunofluorescence, and Brn3a-TUNEL double staining.</p><p><strong>Results: </strong>. STAT1 silencing reversed the H₂O₂-induced increase of cell apoptosis and oxidative stress and the decrease in cell viability in ARPE-19 cells. STAT1 bound with the IFI30 promoter region and negatively regulated its expression. IFI30 knockdown antagonised the protection of STAT1 silencing against H₂O₂-induced oxidative stress and apoptosis in ARPE-19 cells. STAT1 depletion alleviated optic nerve inflammation, demyelination, axonal loss, and RGC apoptosis in EAE mice.</p><p><strong>Conclusions: </strong>. STAT1 silencing exhibits neuroprotective effects against ON by upregulating IFI30.</p>","PeriodicalId":12322,"journal":{"name":"Folia histochemica et cytobiologica","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia histochemica et cytobiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/fhc.104300","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: . Oxidative damage-induced retinal pigment epithelial (RPE) cell apoptosis and optic nerve inflammation and demyelination are closely related to the pathogenesis of optic neuritis (ON). STAT1 has been found to be activated in the retina and optic nerve of ON rats. Our study aimed to determine whether STAT1 depletion exerts neuroprotective effects against ON in both cellular and animal models.

Material and methods: . ARPE-19 cells were stimulated by H₂O₂ to induce oxidative stress, followed by STAT1 and IFI30 silencing. CCK-8 and flow cytometry assays assessed ARPE-19 cell viability and apoptosis. RT-qPCR, Western blotting, DCFH-DA staining, and commercial kits detected the levels of STAT1, IFI30, apoptosis markers, and antioxidant/oxidative markers. CHIP and luciferase reporter assays validated the binding between STAT1 and IFI30 promoter. Female C57BL/6 mice were immunised with myelin oligodendrocyte glycoprotein (MOG) peptide (MOG35-55) to induce experimental autoimmune encephalomyelitis, an animal model of ON. Optic nerve inflammation, demyelination, axonal loss, and retinalganglion cell (RGC) apoptosis in EAE mice after STAT1 knockdown were evaluated via haematoxylin and eosin, luxol fast blue, immunofluorescence, and Brn3a-TUNEL double staining.

Results: . STAT1 silencing reversed the H₂O₂-induced increase of cell apoptosis and oxidative stress and the decrease in cell viability in ARPE-19 cells. STAT1 bound with the IFI30 promoter region and negatively regulated its expression. IFI30 knockdown antagonised the protection of STAT1 silencing against H₂O₂-induced oxidative stress and apoptosis in ARPE-19 cells. STAT1 depletion alleviated optic nerve inflammation, demyelination, axonal loss, and RGC apoptosis in EAE mice.

Conclusions: . STAT1 silencing exhibits neuroprotective effects against ON by upregulating IFI30.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Folia histochemica et cytobiologica
Folia histochemica et cytobiologica 生物-生化与分子生物学
CiteScore
2.80
自引率
6.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: "Folia Histochemica et Cytobiologica" is an international, English-language journal publishing articles in the areas of histochemistry, cytochemistry and cell & tissue biology. "Folia Histochemica et Cytobiologica" was established in 1963 under the title: ‘Folia Histochemica et Cytochemica’ by the Polish Histochemical and Cytochemical Society as a journal devoted to the rapidly developing fields of histochemistry and cytochemistry. In 1984, the profile of the journal was broadened to accommodate papers dealing with cell and tissue biology, and the title was accordingly changed to "Folia Histochemica et Cytobiologica". "Folia Histochemica et Cytobiologica" is published quarterly, one volume a year, by the Polish Histochemical and Cytochemical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信