{"title":"DRFormer: A Benchmark Model for RNA Sequence Downstream Tasks.","authors":"Jianqi Fu, Haohao Li, Yanlei Kang, Hancan Zhu, Tiren Huang, Zhong Li","doi":"10.3390/genes16030284","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> RNA research is critical for understanding gene regulation, disease mechanisms, and therapeutic development. Constructing effective RNA benchmark models for accurate downstream analysis has become a significant research challenge. The objective of this study is to propose a robust benchmark model, DRFormer, for RNA sequence downstream tasks. <b>Methods:</b> The DRFormer model utilizes RNA sequences to construct novel vision features based on secondary structure and sequence distance. These features are pre-trained using the SWIN model to develop a SWIN-RNA submodel. This submodel is then integrated with an RNA sequence model to construct a multimodal model for downstream analysis. <b>Results</b>: We conducted experiments on various RNA downstream tasks. In the sequence classification task, the MCC reached 94.4%, surpassing the state-of-the-art RNAErnie model by 1.2%. In the protein-RNA interaction prediction, DRFormer achieved an MCC of 0.492, outperforming advanced models like BERT-RBP and PrismNet. In RNA secondary structure prediction, the F1 score was 0.690, exceeding the widely used SPOT-RNA model by 1%. Additionally, generalization experiments on DNA tasks yielded satisfactory results. <b>Conclusions:</b> DRFormer is the first RNA sequence downstream analysis model that leverages structural features to construct a vision model and integrates sequence and vision models in a multimodal manner. This approach yields excellent prediction and analysis results, making it a valuable contribution to RNA research.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16030284","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: RNA research is critical for understanding gene regulation, disease mechanisms, and therapeutic development. Constructing effective RNA benchmark models for accurate downstream analysis has become a significant research challenge. The objective of this study is to propose a robust benchmark model, DRFormer, for RNA sequence downstream tasks. Methods: The DRFormer model utilizes RNA sequences to construct novel vision features based on secondary structure and sequence distance. These features are pre-trained using the SWIN model to develop a SWIN-RNA submodel. This submodel is then integrated with an RNA sequence model to construct a multimodal model for downstream analysis. Results: We conducted experiments on various RNA downstream tasks. In the sequence classification task, the MCC reached 94.4%, surpassing the state-of-the-art RNAErnie model by 1.2%. In the protein-RNA interaction prediction, DRFormer achieved an MCC of 0.492, outperforming advanced models like BERT-RBP and PrismNet. In RNA secondary structure prediction, the F1 score was 0.690, exceeding the widely used SPOT-RNA model by 1%. Additionally, generalization experiments on DNA tasks yielded satisfactory results. Conclusions: DRFormer is the first RNA sequence downstream analysis model that leverages structural features to construct a vision model and integrates sequence and vision models in a multimodal manner. This approach yields excellent prediction and analysis results, making it a valuable contribution to RNA research.
期刊介绍:
Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.