An Exploratory Genomic and Transcriptomic Analysis Between Choloepus didactylus and Homo sapiens.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Genes Pub Date : 2025-02-25 DOI:10.3390/genes16030272
Ariella Baran, Antony Ibrahim, Yuka Nakano, Hideyuki Aoshima, Takeshi Ozeki, Iri Sato-Baran, David D Ordinario
{"title":"An Exploratory Genomic and Transcriptomic Analysis Between <i>Choloepus didactylus</i> and <i>Homo sapiens</i>.","authors":"Ariella Baran, Antony Ibrahim, Yuka Nakano, Hideyuki Aoshima, Takeshi Ozeki, Iri Sato-Baran, David D Ordinario","doi":"10.3390/genes16030272","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background/Objectives:</i> Sloths, a group of xenarthran mammals currently comprising six recognized distinct species, have been the focus of much physiological animal research due to their extremely slow metabolisms, deliberate movements, and their status as a species relatively unchanged for over 26 million years. However, despite all the effort aimed at understanding these unique characteristics, the sloth genome remains largely unexplored. Due to the link between genetics and observed traits, such an investigation could potentially lead to insights regarding the genetic basis of unique sloth behaviors and characteristics, such as slow movement, low metabolism, and longevity. <i>Methods:</i> In this exploratory investigation, we performed whole genomic and transcriptomic analysis of a female <i>Choloepus didactylus</i> (Linnaeus's Two-Toed Sloth). Through whole genome sequencing (WGS), the genetic overlap between female two-toed sloths and female humans was estimated in line with evolutionary biology. <i>Results:</i> Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) showed significant differences between gene expression levels in two-toed sloths and humans related to metabolism, body temperature control, cell cycle regulation, telomere maintenance, circadian rhythm regulation, and cancer prevention. <i>Conclusions:</i> The discovered differences imply a relationship to the low metabolisms, slow movements, and longevity displayed by sloths. Future exploratory research will include additional testing to determine if these findings are universal among all recognized sloth species, as well as to address the relationship between specific gene and protein functions and observed traits.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16030272","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Sloths, a group of xenarthran mammals currently comprising six recognized distinct species, have been the focus of much physiological animal research due to their extremely slow metabolisms, deliberate movements, and their status as a species relatively unchanged for over 26 million years. However, despite all the effort aimed at understanding these unique characteristics, the sloth genome remains largely unexplored. Due to the link between genetics and observed traits, such an investigation could potentially lead to insights regarding the genetic basis of unique sloth behaviors and characteristics, such as slow movement, low metabolism, and longevity. Methods: In this exploratory investigation, we performed whole genomic and transcriptomic analysis of a female Choloepus didactylus (Linnaeus's Two-Toed Sloth). Through whole genome sequencing (WGS), the genetic overlap between female two-toed sloths and female humans was estimated in line with evolutionary biology. Results: Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) showed significant differences between gene expression levels in two-toed sloths and humans related to metabolism, body temperature control, cell cycle regulation, telomere maintenance, circadian rhythm regulation, and cancer prevention. Conclusions: The discovered differences imply a relationship to the low metabolisms, slow movements, and longevity displayed by sloths. Future exploratory research will include additional testing to determine if these findings are universal among all recognized sloth species, as well as to address the relationship between specific gene and protein functions and observed traits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信