Vasileios L Zogopoulos, Konstantinos Papadopoulos, Apostolos Malatras, Vassiliki A Iconomidou, Ioannis Michalopoulos
{"title":"ACT2.6: Global Gene Coexpression Network in <i>Arabidopsis thaliana</i> Using WGCNA.","authors":"Vasileios L Zogopoulos, Konstantinos Papadopoulos, Apostolos Malatras, Vassiliki A Iconomidou, Ioannis Michalopoulos","doi":"10.3390/genes16030258","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Genes with similar expression patterns across multiple samples are considered coexpressed, and they may participate in similar biological processes or pathways. Gene coexpression networks depict the degree of similarity between the expression profiles of all genes in a set of samples. Gene coexpression tools allow for the prediction of functional gene partners or the assignment of roles to genes of unknown function. Weighted Gene Correlation Network Analysis (WGCNA) is an R package that provides a multitude of functions for constructing and analyzing a weighted or unweighted gene coexpression network.</p><p><strong>Methods: </strong>Previously preprocessed, high-quality gene expression data of 3500 samples of Affymetrix microarray technology from various tissues of the <i>Arabidopsis thaliana</i> plant model species were used to construct a weighted gene coexpression network, using WGCNA.</p><p><strong>Results: </strong>The gene dendrogram was used as the basis for the creation of a new <i>Arabidopsis</i> coexpression tool (ACT) version (ACT2.6). The dendrogram contains 21,273 leaves, each one corresponding to a single gene. Genes that are clustered in the same clade are coexpressed. WGCNA grouped the genes into 27 functional modules, all of which were positively or negatively correlated with specific tissues.</p><p><strong>Discussion: </strong>Genes known to be involved in common metabolic pathways were discovered in the same module. By comparing the current ACT version with the previous one, it was shown that the new version outperforms the old one in discovering the functional connections between gene partners. ACT2.6 is a major upgrade over the previous version and a significant addition to the collection of public gene coexpression tools.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16030258","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Genes with similar expression patterns across multiple samples are considered coexpressed, and they may participate in similar biological processes or pathways. Gene coexpression networks depict the degree of similarity between the expression profiles of all genes in a set of samples. Gene coexpression tools allow for the prediction of functional gene partners or the assignment of roles to genes of unknown function. Weighted Gene Correlation Network Analysis (WGCNA) is an R package that provides a multitude of functions for constructing and analyzing a weighted or unweighted gene coexpression network.
Methods: Previously preprocessed, high-quality gene expression data of 3500 samples of Affymetrix microarray technology from various tissues of the Arabidopsis thaliana plant model species were used to construct a weighted gene coexpression network, using WGCNA.
Results: The gene dendrogram was used as the basis for the creation of a new Arabidopsis coexpression tool (ACT) version (ACT2.6). The dendrogram contains 21,273 leaves, each one corresponding to a single gene. Genes that are clustered in the same clade are coexpressed. WGCNA grouped the genes into 27 functional modules, all of which were positively or negatively correlated with specific tissues.
Discussion: Genes known to be involved in common metabolic pathways were discovered in the same module. By comparing the current ACT version with the previous one, it was shown that the new version outperforms the old one in discovering the functional connections between gene partners. ACT2.6 is a major upgrade over the previous version and a significant addition to the collection of public gene coexpression tools.
期刊介绍:
Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.