Ectopic expression of AtMYB115 and AtMYB118 induces green tissue formation in non-green organs of Arabidopsis thaliana.

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hyeon-Ung Jang, Sang-Kee Song
{"title":"Ectopic expression of AtMYB115 and AtMYB118 induces green tissue formation in non-green organs of Arabidopsis thaliana.","authors":"Hyeon-Ung Jang, Sang-Kee Song","doi":"10.1007/s13258-025-01639-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A dominant mutant, green root-dominant (grt-D), which exhibits a green-root phenotype, was identified using the GAL4-UAS activation tagging system in the Q2610 enhancer trap line of Arabidopsis thaliana (Arabidopsis).</p><p><strong>Objective: </strong>To identify the gene responsible for the grt-D phenotype and investigate whether its ectopic expression induces green petal formation.</p><p><strong>Methods: </strong>The gene responsible for the grt-D phenotype was identified via thermal asymmetric interlaced-polymerase chain reaction (PCR). The cloned gene and its homolog were expressed under the control of the Q2610 enhancer for root tip expression and the APETALA3 (AP3) or PISTILLATA (PI) promoter for petal-preferential expression.</p><p><strong>Results: </strong>The 5 × UAS tag in grt-D was located 111 base pairs upstream of the start codon of AtMYB115. Ectopic expression of AtMYB115 or its closest homolog, AtMYB118, under the Q2610 enhancer recapitulated the grt-D green-root phenotype, indicating functional equivalence between the two genes. To examine their effect on petal development, AtMYB115 and AtMYB118 were expressed under the AP3 and PI promoters. The resulting transgenic lines (AP3 >  > AtMYB115, AP3 >  > AtMYB118, PI >  > AtMYB115, and PI >  > AtMYB118) developed short, pale green petals and sterile stamens. The green petals exhibited reduced expression of STAY-GREEN 1, which encodes Mg-dechelatase, a key enzyme involved in chlorophyll degradation, suggesting that the green-petal phenotype results from impaired chlorophyll breakdown.</p><p><strong>Conclusion: </strong>These findings demonstrate that the ectopic expression of AtMYB115 and AtMYB118 induces green tissue development in non-green organs of Arabidopsis.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-025-01639-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: A dominant mutant, green root-dominant (grt-D), which exhibits a green-root phenotype, was identified using the GAL4-UAS activation tagging system in the Q2610 enhancer trap line of Arabidopsis thaliana (Arabidopsis).

Objective: To identify the gene responsible for the grt-D phenotype and investigate whether its ectopic expression induces green petal formation.

Methods: The gene responsible for the grt-D phenotype was identified via thermal asymmetric interlaced-polymerase chain reaction (PCR). The cloned gene and its homolog were expressed under the control of the Q2610 enhancer for root tip expression and the APETALA3 (AP3) or PISTILLATA (PI) promoter for petal-preferential expression.

Results: The 5 × UAS tag in grt-D was located 111 base pairs upstream of the start codon of AtMYB115. Ectopic expression of AtMYB115 or its closest homolog, AtMYB118, under the Q2610 enhancer recapitulated the grt-D green-root phenotype, indicating functional equivalence between the two genes. To examine their effect on petal development, AtMYB115 and AtMYB118 were expressed under the AP3 and PI promoters. The resulting transgenic lines (AP3 >  > AtMYB115, AP3 >  > AtMYB118, PI >  > AtMYB115, and PI >  > AtMYB118) developed short, pale green petals and sterile stamens. The green petals exhibited reduced expression of STAY-GREEN 1, which encodes Mg-dechelatase, a key enzyme involved in chlorophyll degradation, suggesting that the green-petal phenotype results from impaired chlorophyll breakdown.

Conclusion: These findings demonstrate that the ectopic expression of AtMYB115 and AtMYB118 induces green tissue development in non-green organs of Arabidopsis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信