Design and evaluation of valve interventions using ex vivo biomechanical modeling: the Stanford experience.

IF 1.1 4区 医学 Q4 CARDIAC & CARDIOVASCULAR SYSTEMS
Gabe Weininger, Stefan Elde, Yuanjia Zhu, Y Joseph Woo
{"title":"Design and evaluation of valve interventions using ex vivo biomechanical modeling: the Stanford experience.","authors":"Gabe Weininger, Stefan Elde, Yuanjia Zhu, Y Joseph Woo","doi":"10.1007/s11748-025-02127-0","DOIUrl":null,"url":null,"abstract":"<p><p>The increase in prevalence of valvular heart disease coupled with an aging population has placed increased emphasis on durable valvular repair strategies. Despite many advances in valvular therapies, there has been little rigorous biomechanical evaluation and validation of existing repair strategies. Our research group engineered a novel 3D-printed, ex vivo heart simulator, which has allowed us to refine and innovate numerous surgical repair strategies with hemodynamic and biomechanical feedback in real time on explanted animal heart valves. Data obtained from this novel simulator have directly influenced clinical practice at our institution. It has also proven to be an outstanding platform for valvular device development. Herein, we will review our experience with ex vivo biomechanical simulation, subdivided into work on aortic valve pathology, mitral valve pathology, and novel devices.</p>","PeriodicalId":12585,"journal":{"name":"General Thoracic and Cardiovascular Surgery","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Thoracic and Cardiovascular Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11748-025-02127-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in prevalence of valvular heart disease coupled with an aging population has placed increased emphasis on durable valvular repair strategies. Despite many advances in valvular therapies, there has been little rigorous biomechanical evaluation and validation of existing repair strategies. Our research group engineered a novel 3D-printed, ex vivo heart simulator, which has allowed us to refine and innovate numerous surgical repair strategies with hemodynamic and biomechanical feedback in real time on explanted animal heart valves. Data obtained from this novel simulator have directly influenced clinical practice at our institution. It has also proven to be an outstanding platform for valvular device development. Herein, we will review our experience with ex vivo biomechanical simulation, subdivided into work on aortic valve pathology, mitral valve pathology, and novel devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
General Thoracic and Cardiovascular Surgery
General Thoracic and Cardiovascular Surgery Medicine-Pulmonary and Respiratory Medicine
CiteScore
2.70
自引率
8.30%
发文量
142
期刊介绍: The General Thoracic and Cardiovascular Surgery is the official publication of The Japanese Association for Thoracic Surgery and The Japanese Association for Chest Surgery, the affiliated journal of The Japanese Society for Cardiovascular Surgery, that publishes clinical and experimental studies in fields related to thoracic and cardiovascular surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信