Discovery of the first isoform-specific sGC activator: Selective activation of GC-1 by runcaciguat

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Svenja Stomberg , Anne Rühle , Theresa Wittrien , Peter Sandner , Sönke Behrends
{"title":"Discovery of the first isoform-specific sGC activator: Selective activation of GC-1 by runcaciguat","authors":"Svenja Stomberg ,&nbsp;Anne Rühle ,&nbsp;Theresa Wittrien ,&nbsp;Peter Sandner ,&nbsp;Sönke Behrends","doi":"10.1016/j.ejphar.2025.177557","DOIUrl":null,"url":null,"abstract":"<div><div>Drug research and development programmes targeting soluble guanylyl cyclase (sGC) have been highly successful, leading to the launch of the sGC stimulators riociguat for pulmonary hypertension (2013) and vericiguat for chronic heart failure (2021). As the main receptor for nitric oxide, sGC plays a vital role in various physiological processes. It consists of an alpha and a beta subunit, with two distinct isoforms identified in humans: GC-1 (α<sub>1</sub>/β<sub>1</sub>) and GC-2 (α<sub>2</sub>/β<sub>1</sub>). Growing evidence indicates that these isoforms engage in different downstream signalling pathways, indicating that isoform-specific approaches could lead to novel therapeutic opportunities and reduce potential side effects.</div><div>In this study, we performed concentration-response measurements with the sGC activators BAY 60–2770, BI 703704 and runcaciguat (BAY 1101042) in cell systems expressing each isoform and in purified enzymes. We found that runcaciguat selectively activated GC-1, while acting as a competitive antagonist to other activators in GC-2, without interfering with nitric oxide. BAY 60–2770 and BI 703704 activated both isoforms, albeit with varying efficacy.</div><div>Our findings challenge the historical view that the two sGC isoforms are functionally indistinguishable. In fact, we demonstrate that the isoforms can be activated independently, highlighting their distinct functional profiles. Notably, runcaciguat is the first sGC activator identified to selectively target GC-1 at therapeutic concentrations. This selective targeting of isoforms not only opens avenues for new therapeutic strategies but also provides an alternative to knockout animal models for investigating isoform-specific functions.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"996 ","pages":"Article 177557"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925003115","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug research and development programmes targeting soluble guanylyl cyclase (sGC) have been highly successful, leading to the launch of the sGC stimulators riociguat for pulmonary hypertension (2013) and vericiguat for chronic heart failure (2021). As the main receptor for nitric oxide, sGC plays a vital role in various physiological processes. It consists of an alpha and a beta subunit, with two distinct isoforms identified in humans: GC-1 (α11) and GC-2 (α21). Growing evidence indicates that these isoforms engage in different downstream signalling pathways, indicating that isoform-specific approaches could lead to novel therapeutic opportunities and reduce potential side effects.
In this study, we performed concentration-response measurements with the sGC activators BAY 60–2770, BI 703704 and runcaciguat (BAY 1101042) in cell systems expressing each isoform and in purified enzymes. We found that runcaciguat selectively activated GC-1, while acting as a competitive antagonist to other activators in GC-2, without interfering with nitric oxide. BAY 60–2770 and BI 703704 activated both isoforms, albeit with varying efficacy.
Our findings challenge the historical view that the two sGC isoforms are functionally indistinguishable. In fact, we demonstrate that the isoforms can be activated independently, highlighting their distinct functional profiles. Notably, runcaciguat is the first sGC activator identified to selectively target GC-1 at therapeutic concentrations. This selective targeting of isoforms not only opens avenues for new therapeutic strategies but also provides an alternative to knockout animal models for investigating isoform-specific functions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信