First-Principles Investigation of 2D o-Al2C2 Monolayer: A High-Performance Anode for Li/Na-ion Batteries.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
A Agouri, A Benaddi, N Khossossi, S El Filali, Abderrahman Abbassi, A Hasnaoui, S Taj, B Manaut
{"title":"First-Principles Investigation of 2D o-Al2C2 Monolayer: A High-Performance Anode for Li/Na-ion Batteries.","authors":"A Agouri, A Benaddi, N Khossossi, S El Filali, Abderrahman Abbassi, A Hasnaoui, S Taj, B Manaut","doi":"10.1002/cphc.202500025","DOIUrl":null,"url":null,"abstract":"<p><p>Development of novel anode materials with superior electrochemical performanceis imperative for advancing next-generation high-performance recharge able batteries beyond current limitations. In this study, we present a 2D o-Al2C2 monolayer as a promising lightweight candidate for lithium and sodium-ion battery systems, based on the density functional theory (DFT) investigations and ab initio molecular dynamics (AIMD) simulations. Our comprehensive investigation demonstrates that the o-Al2C2 monolayer ex-hibits remarkable stability with a cohesive energy of -5.30 eV/atom and maintains its structural integrity at room temperature during extended AIMD simulations. The o-Al2C2 monolayer demonstrates exceptional electrochem ical characteristics for Li and Na storage: theoretical specific capacities of 3780.42 mA.h.g-1 and 3436.75 mA.h.g-1, optimal average open circuit volt ages of 0.81 V and 0.67 V, and favorable diffusion barriers of 0.62 eV and 0.31 eV, respectively. These performance metrics significantly surpass those of conventional graphite (372 mA.h.g-1) and other recently reported 2D anode materials, establishing o-Al2C2 as an exceptionally promising candidate for next-generation energy storage applications. Hence, this current theoretical investigation suggests that the o-Al2C2 monolayer holds significant potential for future experimental studies in lithium and sodium storage applications for LIB and NIB systems.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500025"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500025","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Development of novel anode materials with superior electrochemical performanceis imperative for advancing next-generation high-performance recharge able batteries beyond current limitations. In this study, we present a 2D o-Al2C2 monolayer as a promising lightweight candidate for lithium and sodium-ion battery systems, based on the density functional theory (DFT) investigations and ab initio molecular dynamics (AIMD) simulations. Our comprehensive investigation demonstrates that the o-Al2C2 monolayer ex-hibits remarkable stability with a cohesive energy of -5.30 eV/atom and maintains its structural integrity at room temperature during extended AIMD simulations. The o-Al2C2 monolayer demonstrates exceptional electrochem ical characteristics for Li and Na storage: theoretical specific capacities of 3780.42 mA.h.g-1 and 3436.75 mA.h.g-1, optimal average open circuit volt ages of 0.81 V and 0.67 V, and favorable diffusion barriers of 0.62 eV and 0.31 eV, respectively. These performance metrics significantly surpass those of conventional graphite (372 mA.h.g-1) and other recently reported 2D anode materials, establishing o-Al2C2 as an exceptionally promising candidate for next-generation energy storage applications. Hence, this current theoretical investigation suggests that the o-Al2C2 monolayer holds significant potential for future experimental studies in lithium and sodium storage applications for LIB and NIB systems.

二维o-Al2C2单层:高性能锂/钠离子电池负极的第一性原理研究。
开发具有优异电化学性能的新型阳极材料是推动下一代高性能可充电电池超越当前限制的必要条件。在这项研究中,我们基于密度泛函理论(DFT)研究和从头算分子动力学(AIMD)模拟,提出了一种2D o-Al2C2单层作为锂离子和钠离子电池系统的轻量级候选材料。我们的综合研究表明,在扩展的AIMD模拟中,o-Al2C2单层具有显著的稳定性,内聚能为-5.30 eV/原子,并在室温下保持其结构完整性。o-Al2C2单层在Li和Na存储方面表现出优异的电化学特性:理论比容量为3780.42 mA.h。g-1和3436.75 mA.h。g-1时,最佳平均开路电压分别为0.81 V和0.67 V,扩散势垒分别为0.62 eV和0.31 eV。这些性能指标大大超过了传统石墨(372 mA.h.g-1)和其他最近报道的2D负极材料,使o-Al2C2成为下一代储能应用中非常有前途的候选者。因此,目前的理论研究表明,o-Al2C2单层在LIB和NIB系统中锂和钠存储应用的未来实验研究中具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信