Biophysical and Biochemical Roles of Shear Stress on Endothelium: A Revisit and New Insights.

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Circulation research Pub Date : 2025-03-28 Epub Date: 2025-03-27 DOI:10.1161/CIRCRESAHA.124.325685
Chak Kwong Cheng, Nanping Wang, Li Wang, Yu Huang
{"title":"Biophysical and Biochemical Roles of Shear Stress on Endothelium: A Revisit and New Insights.","authors":"Chak Kwong Cheng, Nanping Wang, Li Wang, Yu Huang","doi":"10.1161/CIRCRESAHA.124.325685","DOIUrl":null,"url":null,"abstract":"<p><p>Hemodynamic shear stress, the frictional force exerted by blood flow on the endothelium, mediates vascular homeostasis. This review examines the biophysical nature and biochemical effects of shear stress on endothelial cells, with a particular focus on its impact on cardiovascular pathophysiology. Atherosclerosis develops preferentially at arterial branches and curvatures, where disturbed flow patterns are most prevalent. The review also highlights the range of shear stress across diverse human arteries and its temporal variations, including aging-related alterations. This review presents a summary of the critical mechanosensors and flow-sensitive effectors that respond to shear stress, along with the downstream cellular events that they regulate. The review evaluates experimental models for studying shear stress in vitro and in vivo, as well as their potential limitations. The review discusses strategies targeting shear stress, including pharmacological approaches, physiological means, surgical interventions, and gene therapies. Furthermore, the review addresses emerging perspectives in hemodynamic research, including single-cell sequencing, spatial omics, metabolomics, and multiomics technologies. By integrating the biophysical and biochemical aspects of shear stress, this review offers insights into the complex interplay between hemodynamics and endothelial homeostasis at the preclinical and clinical levels.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"136 7","pages":"752-772"},"PeriodicalIF":16.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325685","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hemodynamic shear stress, the frictional force exerted by blood flow on the endothelium, mediates vascular homeostasis. This review examines the biophysical nature and biochemical effects of shear stress on endothelial cells, with a particular focus on its impact on cardiovascular pathophysiology. Atherosclerosis develops preferentially at arterial branches and curvatures, where disturbed flow patterns are most prevalent. The review also highlights the range of shear stress across diverse human arteries and its temporal variations, including aging-related alterations. This review presents a summary of the critical mechanosensors and flow-sensitive effectors that respond to shear stress, along with the downstream cellular events that they regulate. The review evaluates experimental models for studying shear stress in vitro and in vivo, as well as their potential limitations. The review discusses strategies targeting shear stress, including pharmacological approaches, physiological means, surgical interventions, and gene therapies. Furthermore, the review addresses emerging perspectives in hemodynamic research, including single-cell sequencing, spatial omics, metabolomics, and multiomics technologies. By integrating the biophysical and biochemical aspects of shear stress, this review offers insights into the complex interplay between hemodynamics and endothelial homeostasis at the preclinical and clinical levels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信