Tracking spatiotemporal distribution of organelle contacts in vivo with SPLICS reporters.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Lucia Barazzuol, Tetiana Tykhonenko, Tia L Griffiths, Alessio Vagnoni, Marisa Brini, Tito Calì
{"title":"Tracking spatiotemporal distribution of organelle contacts in vivo with SPLICS reporters.","authors":"Lucia Barazzuol, Tetiana Tykhonenko, Tia L Griffiths, Alessio Vagnoni, Marisa Brini, Tito Calì","doi":"10.1038/s41419-025-07511-5","DOIUrl":null,"url":null,"abstract":"<p><p>Organelle contact sites are crucial for cellular function, enabling the exchange of lipids, ions, and other molecules between different organelles. The ability to track these contact sites in vivo has been significantly advanced by the development of SPLICS (Split-GFP-based Contact Site Sensors) reporters, which have provided unprecedented insights into the intricate network of organelle communication. This innovative and powerful tool allows the real-time visualization of different organelle interactions in living cells and in vivo thus unraveling the complexity of their dynamic in the context of cellular homeostasis. Recent studies highlighted the dynamic nature of organelle contact sites either in terms of tethering/untethering and of movement of the contact itself in time and space: whether unique temporal behaviors and contact site-specific dynamics of different organelle interactions exist is currently unknown. In this study, we investigated the spatiotemporal distribution of various organelle contact sites using time-lapse in vitro and in vivo imaging and discovered an evolutionarily conserved dynamic pattern among different contact sites, influenced by the specific partner organelles involved. These findings highlight the importance of spatial and temporal regulation at organelle contact sites, which may underlie their diverse physiological functions. The discovery of contact site-specific dynamics opens new avenues for understanding the regulation of organelle interactions in health and disease, with potential implications for developing targeted therapeutic strategies.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"214"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07511-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Organelle contact sites are crucial for cellular function, enabling the exchange of lipids, ions, and other molecules between different organelles. The ability to track these contact sites in vivo has been significantly advanced by the development of SPLICS (Split-GFP-based Contact Site Sensors) reporters, which have provided unprecedented insights into the intricate network of organelle communication. This innovative and powerful tool allows the real-time visualization of different organelle interactions in living cells and in vivo thus unraveling the complexity of their dynamic in the context of cellular homeostasis. Recent studies highlighted the dynamic nature of organelle contact sites either in terms of tethering/untethering and of movement of the contact itself in time and space: whether unique temporal behaviors and contact site-specific dynamics of different organelle interactions exist is currently unknown. In this study, we investigated the spatiotemporal distribution of various organelle contact sites using time-lapse in vitro and in vivo imaging and discovered an evolutionarily conserved dynamic pattern among different contact sites, influenced by the specific partner organelles involved. These findings highlight the importance of spatial and temporal regulation at organelle contact sites, which may underlie their diverse physiological functions. The discovery of contact site-specific dynamics opens new avenues for understanding the regulation of organelle interactions in health and disease, with potential implications for developing targeted therapeutic strategies.

利用 SPLICS 报告器跟踪体内细胞器接触的时空分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信