Kevin Vo, Sharmin Shila, Yashica Sharma, Grace J Pei, Cinthia Y Rosales, Vinesh Dahiya, Patrick E Fields, M A Karim Rumi
{"title":"Detection of mRNA Transcript Variants.","authors":"Kevin Vo, Sharmin Shila, Yashica Sharma, Grace J Pei, Cinthia Y Rosales, Vinesh Dahiya, Patrick E Fields, M A Karim Rumi","doi":"10.3390/genes16030343","DOIUrl":null,"url":null,"abstract":"<p><p>Most eukaryotic genes express more than one mature mRNA, defined as transcript variants. This complex phenomenon arises from various mechanisms, such as using alternative transcription start sites and alternative post-transcriptional processing events. The resulting transcript variants can lead to synthesizing proteins that possess distinct functional domains or may even generate noncoding RNAs, each with unique roles in cellular processes. The generation of these transcript variants is not merely a random occurrence; it is cell-type specific and varies with developmental stages, aging processes, or pathogenesis of diseases. This highlights the biological significance of transcript variants in regulating gene expression and their potential impact on cellular functionality. Despite the biological importance, investigating transcript variants has been hampered by challenges associated with detecting their expression. This review article addresses the advancements in molecular techniques in detecting transcript variants. Traditional methods such as RT-PCR and RT-qPCR can easily detect known transcript variants using primers that target unique exons associated with the variants. Other techniques like RACE-PCR and hybridization-based methods, including Northern blotting, RNase protection assays, and microarrays, have also been utilized to detect transcript variants. Nevertheless, RNA sequencing (RNA-Seq) has emerged as a powerful technique for identifying transcript variants, especially those with previously unknown sequences. The effectiveness of RNA sequencing in transcript variant detection depends on the specific sequencing approach and the precision of data analysis. By understanding the strengths and weaknesses of each laboratory technique, researchers can develop more effective strategies for detecting mRNA transcript variants. This ability will be crucial for our comprehensive understanding of gene regulation and the implications of transcript diversity in various biological contexts.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16030343","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Most eukaryotic genes express more than one mature mRNA, defined as transcript variants. This complex phenomenon arises from various mechanisms, such as using alternative transcription start sites and alternative post-transcriptional processing events. The resulting transcript variants can lead to synthesizing proteins that possess distinct functional domains or may even generate noncoding RNAs, each with unique roles in cellular processes. The generation of these transcript variants is not merely a random occurrence; it is cell-type specific and varies with developmental stages, aging processes, or pathogenesis of diseases. This highlights the biological significance of transcript variants in regulating gene expression and their potential impact on cellular functionality. Despite the biological importance, investigating transcript variants has been hampered by challenges associated with detecting their expression. This review article addresses the advancements in molecular techniques in detecting transcript variants. Traditional methods such as RT-PCR and RT-qPCR can easily detect known transcript variants using primers that target unique exons associated with the variants. Other techniques like RACE-PCR and hybridization-based methods, including Northern blotting, RNase protection assays, and microarrays, have also been utilized to detect transcript variants. Nevertheless, RNA sequencing (RNA-Seq) has emerged as a powerful technique for identifying transcript variants, especially those with previously unknown sequences. The effectiveness of RNA sequencing in transcript variant detection depends on the specific sequencing approach and the precision of data analysis. By understanding the strengths and weaknesses of each laboratory technique, researchers can develop more effective strategies for detecting mRNA transcript variants. This ability will be crucial for our comprehensive understanding of gene regulation and the implications of transcript diversity in various biological contexts.
期刊介绍:
Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.