Beckey Trinh, Signe Johanne Rasmussen, Mathilde Ehnhuus Brøgger-Jensen, Christoph Andreas Engelhard, Anton Lund, Ana Rita Tavanez, Alexandra Vassilieva, Susanne Janum, Ulrik Winning Iepsen, Bente Kiens, Kirsten Møller, Bente Klarlund Pedersen, Gerrit Van Hall, Helga Ellingsgaard
{"title":"Inhibition of basal IL-6 activity promotes subcutaneous fat retention in humans during fasting and postprandial states.","authors":"Beckey Trinh, Signe Johanne Rasmussen, Mathilde Ehnhuus Brøgger-Jensen, Christoph Andreas Engelhard, Anton Lund, Ana Rita Tavanez, Alexandra Vassilieva, Susanne Janum, Ulrik Winning Iepsen, Bente Kiens, Kirsten Møller, Bente Klarlund Pedersen, Gerrit Van Hall, Helga Ellingsgaard","doi":"10.1016/j.xcrm.2025.102042","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-6 (IL-6) knockout mice and humans treated with IL-6 receptor blockade gain adipose tissue mass. This study investigates whether basal IL-6 activity (resting IL-6 levels) influences fat storage during fasting and postprandial states. Using stable-isotope tracer techniques and IL-6 receptor blockade with tocilizumab, we examine fat kinetics in humans. Blocking basal IL-6 activity reduces fasting whole-body lipolysis, decreases hormone-sensitive lipase (HSL) phosphorylation and fatty acid release in adipose tissue, and impairs postprandial fatty acid uptake in the leg. These results suggest diminished fatty acid uptake and oxidation in skeletal muscle, along with enhanced fatty acid entrapment in adipose tissue, which may account for the increased adiposity in the absence of IL-6 activity. Additionally, IL-6 blockade increases the escape of meal-derived fatty acids into the bloodstream. Whether this affects fatty acid storage and lipotoxicity in other tissues warrants further investigation. This study was registered at ClinicalTrials.gov (NCT04687540).</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102042"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102042","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin-6 (IL-6) knockout mice and humans treated with IL-6 receptor blockade gain adipose tissue mass. This study investigates whether basal IL-6 activity (resting IL-6 levels) influences fat storage during fasting and postprandial states. Using stable-isotope tracer techniques and IL-6 receptor blockade with tocilizumab, we examine fat kinetics in humans. Blocking basal IL-6 activity reduces fasting whole-body lipolysis, decreases hormone-sensitive lipase (HSL) phosphorylation and fatty acid release in adipose tissue, and impairs postprandial fatty acid uptake in the leg. These results suggest diminished fatty acid uptake and oxidation in skeletal muscle, along with enhanced fatty acid entrapment in adipose tissue, which may account for the increased adiposity in the absence of IL-6 activity. Additionally, IL-6 blockade increases the escape of meal-derived fatty acids into the bloodstream. Whether this affects fatty acid storage and lipotoxicity in other tissues warrants further investigation. This study was registered at ClinicalTrials.gov (NCT04687540).
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.