{"title":"SCITUNA: single-cell data integration tool using network alignment.","authors":"Aissa Houdjedj, Yacine Marouf, Mekan Myradov, Süleyman Onur Doğan, Burak Onur Erten, Oznur Tastan, Cesim Erten, Hilal Kazan","doi":"10.1186/s12859-025-06087-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As single-cell genomics experiments increase in complexity and scale, the need to integrate multiple datasets has grown. Such integration enhances cellular feature identification by leveraging larger data volumes. However, batch effects-technical variations arising from differences in labs, times, or protocols-pose a significant challenge. Despite numerous proposed batch correction methods, many still have limitations, such as outputting only dimension-reduced data, relying on computationally intensive models, or resulting in overcorrection for batches with diverse cell type composition.</p><p><strong>Results: </strong>We introduce a novel method for batch effect correction named SCITUNA, a Single-Cell data Integration Tool Using Network Alignment. We perform evaluations on 39 individual batches from four real datasets and a simulated dataset, which include both scRNA-seq and scATAC-seq datasets, spanning multiple organisms and tissues. A thorough comparison of existing batch correction methods using 13 metrics reveals that SCITUNA outperforms current approaches and is successful at preserving biological signals present in the original data. In particular, SCITUNA shows a better performance than the current methods in all the comparisons except for the multiple batch integration of the lung dataset where the difference is 0.004.</p><p><strong>Conclusion: </strong>SCITUNA effectively removes batch effects while retaining the biological signals present in the data. Our extensive experiments reveal that SCITUNA will be a valuable tool for diverse integration tasks.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"92"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06087-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: As single-cell genomics experiments increase in complexity and scale, the need to integrate multiple datasets has grown. Such integration enhances cellular feature identification by leveraging larger data volumes. However, batch effects-technical variations arising from differences in labs, times, or protocols-pose a significant challenge. Despite numerous proposed batch correction methods, many still have limitations, such as outputting only dimension-reduced data, relying on computationally intensive models, or resulting in overcorrection for batches with diverse cell type composition.
Results: We introduce a novel method for batch effect correction named SCITUNA, a Single-Cell data Integration Tool Using Network Alignment. We perform evaluations on 39 individual batches from four real datasets and a simulated dataset, which include both scRNA-seq and scATAC-seq datasets, spanning multiple organisms and tissues. A thorough comparison of existing batch correction methods using 13 metrics reveals that SCITUNA outperforms current approaches and is successful at preserving biological signals present in the original data. In particular, SCITUNA shows a better performance than the current methods in all the comparisons except for the multiple batch integration of the lung dataset where the difference is 0.004.
Conclusion: SCITUNA effectively removes batch effects while retaining the biological signals present in the data. Our extensive experiments reveal that SCITUNA will be a valuable tool for diverse integration tasks.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.