Rahman Baboli, Kai Wu, Jeffrey M Halperin, Xiaobo Li
{"title":"White Matter Microstructural Abnormalities in Children with Familial vs. Non-Familial Attention-Deficit/Hyperactivity Disorder (ADHD).","authors":"Rahman Baboli, Kai Wu, Jeffrey M Halperin, Xiaobo Li","doi":"10.3390/biomedicines13030676","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent, heterogeneous neurodevelopmental disorder. <b>Methods</b>: This study presents, for the first time, a comprehensive investigation of white matter microstructural differences between familial ADHD (ADHD-F) and non-familial ADHD (ADHD-NF) using advanced diffusion tensor imaging analyses in a large community-based sample. <b>Results</b>: Children with ADHD-F exhibited significantly greater volume in the right anterior thalamic radiations and the left inferior fronto-occipital fasciculus compared to controls, and greater volume in the left inferior longitudinal fasciculus relative to ADHD-NF. The ADHD-NF group showed reduced fractional anisotropy in the left inferior longitudinal fasciculus compared to the controls. In both the ADHD-F and ADHD-NF groups, a greater volume of anterior thalamic radiation significantly contributed to reduced ADHD symptoms. <b>Conclusions</b>: Our findings suggest that white matter microstructural alterations along the frontal-thalamic pathways may play a critical role in hereditary factors among children with ADHD-F and significantly contribute to elevated inattentive and hyperactive/impulsive behaviors in the affected children.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13030676","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent, heterogeneous neurodevelopmental disorder. Methods: This study presents, for the first time, a comprehensive investigation of white matter microstructural differences between familial ADHD (ADHD-F) and non-familial ADHD (ADHD-NF) using advanced diffusion tensor imaging analyses in a large community-based sample. Results: Children with ADHD-F exhibited significantly greater volume in the right anterior thalamic radiations and the left inferior fronto-occipital fasciculus compared to controls, and greater volume in the left inferior longitudinal fasciculus relative to ADHD-NF. The ADHD-NF group showed reduced fractional anisotropy in the left inferior longitudinal fasciculus compared to the controls. In both the ADHD-F and ADHD-NF groups, a greater volume of anterior thalamic radiation significantly contributed to reduced ADHD symptoms. Conclusions: Our findings suggest that white matter microstructural alterations along the frontal-thalamic pathways may play a critical role in hereditary factors among children with ADHD-F and significantly contribute to elevated inattentive and hyperactive/impulsive behaviors in the affected children.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.