Jessica Stolz, Kristina Rogal, Sandra Bicher, Johanna Winter, Mabroor Ahmed, Susanne Raulefs, Stephanie E Combs, Stefan H Bartzsch, Thomas E Schmid
{"title":"The Combination of Temporal and Spatial Dose Fractionation in Microbeam Radiation Therapy.","authors":"Jessica Stolz, Kristina Rogal, Sandra Bicher, Johanna Winter, Mabroor Ahmed, Susanne Raulefs, Stephanie E Combs, Stefan H Bartzsch, Thomas E Schmid","doi":"10.3390/biomedicines13030678","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Microbeam radiation therapy (MRT) is an advanced preclinical approach in radiotherapy that utilizes spatially fractionated dose distributions by collimating x-rays into micrometer-wide, planar beams. While the benefits of temporal fractionation are well established and widely incorporated into conventional radiotherapy protocols, the interplay between MRT and temporal dose fractionation remains largely unexplored. In this study, we investigate the effects of combining temporal and spatial dose fractionation by assessing clonogenic cell survival following temporally fractionated MRT with varying irradiation angles, compared to conventional broad-beam (BB) irradiation. <b>Methods</b>: A lung tumor cell line (A549) and a normal lung cell line (MRC-5) were irradiated with a total number of four fractions with a 24 h interval between each fraction. We compared a temporally fractionated BB regime to two temporally fractionated MRT schemes with either overlapping MRT fields or MRT fields with a 45° rotation per fraction. Subsequently, the clonogenic cell survival assay was used by analyzing the corresponding survival fractions (SFs). <b>Results</b>: The clonogenic survival of A549 tumor cells differed significantly between microbeam radiation therapy with rotation (MRT + R) and overlapping MRT. However, neither MRT + R nor overlapping MRT showed statistically significant differences compared to the broad-beam (BB) irradiation for A549. In contrast, the normal tissue cell line MRC-5 exhibited significantly higher clonogenic survival following both MRT + R and overlapping MRT compared to BB. <b>Conclusions</b>: This study demonstrates that combining temporal and spatial fractionation enhances normal tissue cell survival while maintaining equivalent tumor cell kill, potentially increasing the therapeutic index. Our findings support the feasibility of delivering temporally fractionated doses using different MRT modalities and provide clear evidence of the therapeutic benefits of temporally fractionated MRT.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13030678","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Microbeam radiation therapy (MRT) is an advanced preclinical approach in radiotherapy that utilizes spatially fractionated dose distributions by collimating x-rays into micrometer-wide, planar beams. While the benefits of temporal fractionation are well established and widely incorporated into conventional radiotherapy protocols, the interplay between MRT and temporal dose fractionation remains largely unexplored. In this study, we investigate the effects of combining temporal and spatial dose fractionation by assessing clonogenic cell survival following temporally fractionated MRT with varying irradiation angles, compared to conventional broad-beam (BB) irradiation. Methods: A lung tumor cell line (A549) and a normal lung cell line (MRC-5) were irradiated with a total number of four fractions with a 24 h interval between each fraction. We compared a temporally fractionated BB regime to two temporally fractionated MRT schemes with either overlapping MRT fields or MRT fields with a 45° rotation per fraction. Subsequently, the clonogenic cell survival assay was used by analyzing the corresponding survival fractions (SFs). Results: The clonogenic survival of A549 tumor cells differed significantly between microbeam radiation therapy with rotation (MRT + R) and overlapping MRT. However, neither MRT + R nor overlapping MRT showed statistically significant differences compared to the broad-beam (BB) irradiation for A549. In contrast, the normal tissue cell line MRC-5 exhibited significantly higher clonogenic survival following both MRT + R and overlapping MRT compared to BB. Conclusions: This study demonstrates that combining temporal and spatial fractionation enhances normal tissue cell survival while maintaining equivalent tumor cell kill, potentially increasing the therapeutic index. Our findings support the feasibility of delivering temporally fractionated doses using different MRT modalities and provide clear evidence of the therapeutic benefits of temporally fractionated MRT.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.