The Molecular Basis of Polycystic Ovary Syndrome and Its Cardiometabolic Correlates: Exploring the Intersection and Its Clinical Implications-A Narrative Review.
Jasmin Mahabamunuge, Nicole M Sekula, Christina Lepore, Meghana Kudrimoti, Animesh Upadhyay, Khadija Alshowaikh, Howard J Li, David B Seifer, Abdelrahman AlAshqar
{"title":"The Molecular Basis of Polycystic Ovary Syndrome and Its Cardiometabolic Correlates: Exploring the Intersection and Its Clinical Implications-A Narrative Review.","authors":"Jasmin Mahabamunuge, Nicole M Sekula, Christina Lepore, Meghana Kudrimoti, Animesh Upadhyay, Khadija Alshowaikh, Howard J Li, David B Seifer, Abdelrahman AlAshqar","doi":"10.3390/biomedicines13030709","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have highlighted the association between polycystic ovary syndrome (PCOS) and cardiometabolic diseases, leading to an improved understanding of the underlying mechanistic factors. PCOS significantly increases cardiovascular risk by predisposing individuals to various subclinical and clinical conditions, including atherosclerosis and type 2 diabetes mellitus. Additionally, it interacts synergistically with other traditional cardiovascular risk factors, such as obesity, hyperlipidemia, and insulin resistance. Several molecular mechanisms involving genetics, epigenetics, adipokine secretion, hyperandrogenemia, and hyperinsulinemia play a role in the relationship between PCOS and these comorbidities. For instance, androgen excess has been implicated in the development of hypertension, type 2 diabetes mellitus, endothelial dysfunction, and ultimately, broader cardiovascular disease. A deeper understanding of these underlying mechanisms facilitates the development of diagnostic, preventative, and therapeutic strategies directed at reducing cardiometabolic morbidity. This narrative review summarizes the current evidence, explores the potential clinical implications of these findings, and discusses emerging therapies to reduce cardiometabolic morbidity in women with PCOS.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13030709","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies have highlighted the association between polycystic ovary syndrome (PCOS) and cardiometabolic diseases, leading to an improved understanding of the underlying mechanistic factors. PCOS significantly increases cardiovascular risk by predisposing individuals to various subclinical and clinical conditions, including atherosclerosis and type 2 diabetes mellitus. Additionally, it interacts synergistically with other traditional cardiovascular risk factors, such as obesity, hyperlipidemia, and insulin resistance. Several molecular mechanisms involving genetics, epigenetics, adipokine secretion, hyperandrogenemia, and hyperinsulinemia play a role in the relationship between PCOS and these comorbidities. For instance, androgen excess has been implicated in the development of hypertension, type 2 diabetes mellitus, endothelial dysfunction, and ultimately, broader cardiovascular disease. A deeper understanding of these underlying mechanisms facilitates the development of diagnostic, preventative, and therapeutic strategies directed at reducing cardiometabolic morbidity. This narrative review summarizes the current evidence, explores the potential clinical implications of these findings, and discusses emerging therapies to reduce cardiometabolic morbidity in women with PCOS.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.