Sarah R Pope, Molly J McBride, Mrutyunjay A Nair, Xavier E Salas-Solá, Carsten Krebs, J Martin Bollinger, Amie K Boal
{"title":"Heme Oxygenase-Like Metalloenzymes.","authors":"Sarah R Pope, Molly J McBride, Mrutyunjay A Nair, Xavier E Salas-Solá, Carsten Krebs, J Martin Bollinger, Amie K Boal","doi":"10.1146/annurev-biochem-030122-043608","DOIUrl":null,"url":null,"abstract":"<p><p>Heme oxygenase (HO)-like metalloenzymes are an emerging protein superfamily diverse in reaction outcome and mechanism. Found primarily in bacterial biosynthetic pathways, members conserve a flexible protein scaffold shared with the heme catabolic enzyme, HO, and a set of metal-binding residues. Most HO-like metalloenzymes assemble a diiron cluster, although manganese-iron and mononuclear iron cofactors can also be accommodated. In the canonical HO-like diiron oxygenases/oxidases (HDOs), an Fe<sub>2</sub>(II/II) complex reacts with O<sub>2</sub> to form a peroxo-Fe<sub>2</sub>(III/III) intermediate (<b>P</b>), common to all HDOs studied to date. The HO-like scaffold confers both distinctive metal-binding properties, allowing for dynamic cofactor assembly and disassembly, and unusual reactivity to its associated metallocofactor. These features may prove to be important in HDO-mediated catalysis of the fragmentation and rearrangement reactions that remain unprecedented among other dinuclear iron enzymes. Much of the sequence space in the HO-like metalloenzyme superfamily remains unexplored, offering exciting opportunities for the discovery of new mechanisms and reactivities.</p>","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-030122-043608","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heme oxygenase (HO)-like metalloenzymes are an emerging protein superfamily diverse in reaction outcome and mechanism. Found primarily in bacterial biosynthetic pathways, members conserve a flexible protein scaffold shared with the heme catabolic enzyme, HO, and a set of metal-binding residues. Most HO-like metalloenzymes assemble a diiron cluster, although manganese-iron and mononuclear iron cofactors can also be accommodated. In the canonical HO-like diiron oxygenases/oxidases (HDOs), an Fe2(II/II) complex reacts with O2 to form a peroxo-Fe2(III/III) intermediate (P), common to all HDOs studied to date. The HO-like scaffold confers both distinctive metal-binding properties, allowing for dynamic cofactor assembly and disassembly, and unusual reactivity to its associated metallocofactor. These features may prove to be important in HDO-mediated catalysis of the fragmentation and rearrangement reactions that remain unprecedented among other dinuclear iron enzymes. Much of the sequence space in the HO-like metalloenzyme superfamily remains unexplored, offering exciting opportunities for the discovery of new mechanisms and reactivities.
期刊介绍:
The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.