{"title":"KLX ameliorates liver cancer progression by mediating ZBP1 transcription and ubiquitination and increasing ZBP1-induced PANoptosis.","authors":"Zhuo Wang, Yang Yang, Fang-Ting Yao, Feng Zhang, Ke-Ying Lin, Hong-Tao Diao, Qiao-Yue Zhao, Xue Kong, Wei Si, Ya-Ting Xie, Jing-Lun Song, Ling-Hua Zeng, Chun-Lei Wang, Yu-Ting Xiong, Kun-Kun Zou, Xiao-Man Wang, Xin-Yue Zhang, Han Wu, Wei-Tao Jiang, Yu Bian, Bao-Feng Yang","doi":"10.1038/s41401-025-01528-4","DOIUrl":null,"url":null,"abstract":"<p><p>Liver cancer is a highly aggressive malignancy with poor survival rates. Current treatments, including liver transplantation, immunotherapy, and gene therapy, are often limited by late-stage diagnosis and significant side effects, highlighting the urgent need for novel therapeutic agents. In this study, we evaluated the therapeutic potential of Kanglexin (KLX), a novel anthraquinone derivative, in the treatment of liver cancer. In vitro, KLX inhibited the proliferation and migration of HepG2 and Hep3B cells in a dose-dependent manner. Mechanistically, KLX upregulated Z-DNA binding protein 1 (ZBP1) expression, inducing PANoptosis by directly binding to ZBP1, altering its conformation, and reducing its affinity for the E3 ubiquitin ligase ring finger protein 180 (RNF180). This interaction decreased ZBP1 ubiquitination, thereby increasing its stability. Additionally, KLX upregulated the expression of the transcription factor homeobox D10 (HOXD10), which further increased ZBP1 expression. Elevated ZBP1 levels significantly suppressed liver cancer cell proliferation and migration, whereas the inhibitory effects of KLX were reversed upon ZBP1 knockdown. In a xenograft model, KLX significantly inhibited tumor growth with a lower toxicity than oxaliplatin (OXA). In conclusion, KLX promoted PANoptosis in liver cancer cells by upregulating ZBP1 and preventing its degradation, thereby inhibiting liver cancer progression and migration. These findings suggest that KLX is a promising therapeutic agent for liver cancer.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01528-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liver cancer is a highly aggressive malignancy with poor survival rates. Current treatments, including liver transplantation, immunotherapy, and gene therapy, are often limited by late-stage diagnosis and significant side effects, highlighting the urgent need for novel therapeutic agents. In this study, we evaluated the therapeutic potential of Kanglexin (KLX), a novel anthraquinone derivative, in the treatment of liver cancer. In vitro, KLX inhibited the proliferation and migration of HepG2 and Hep3B cells in a dose-dependent manner. Mechanistically, KLX upregulated Z-DNA binding protein 1 (ZBP1) expression, inducing PANoptosis by directly binding to ZBP1, altering its conformation, and reducing its affinity for the E3 ubiquitin ligase ring finger protein 180 (RNF180). This interaction decreased ZBP1 ubiquitination, thereby increasing its stability. Additionally, KLX upregulated the expression of the transcription factor homeobox D10 (HOXD10), which further increased ZBP1 expression. Elevated ZBP1 levels significantly suppressed liver cancer cell proliferation and migration, whereas the inhibitory effects of KLX were reversed upon ZBP1 knockdown. In a xenograft model, KLX significantly inhibited tumor growth with a lower toxicity than oxaliplatin (OXA). In conclusion, KLX promoted PANoptosis in liver cancer cells by upregulating ZBP1 and preventing its degradation, thereby inhibiting liver cancer progression and migration. These findings suggest that KLX is a promising therapeutic agent for liver cancer.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.