Raphael Ogbodo, Gobin Raj Acharya, Ho Martin Yuen, Nicole Zmich, Furong Wang, Hideaki Shirota, Sharon I Lall-Ramnarine, James F Wishart, Andrew J Nieuwkoop, Claudio J Margulis
{"title":"Structure of Novel Phosphonium-Based Ionic Liquids with S and O Substitutions from Experiments and a Mixed Quantum-Classical Approach.","authors":"Raphael Ogbodo, Gobin Raj Acharya, Ho Martin Yuen, Nicole Zmich, Furong Wang, Hideaki Shirota, Sharon I Lall-Ramnarine, James F Wishart, Andrew J Nieuwkoop, Claudio J Margulis","doi":"10.1021/acs.jpcb.5c00129","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents experimental characterization information and synchrotron X-ray scattering measurements on a set of novel O- and S-substituted phosphonium-based ionic liquids (ILs) all coupled with the bis(fluorosulfonyl)imide (FSI<sup>-</sup>) anion. The ILs include the ethoxyethyltriethylphosphonium (P<sub><b>222(2O2)</b></sub><sup><b>+</b></sup>) and triethyl[2-(ethylthio)ethyl]phosphonium (P<sub><b>222(2S2)</b></sub><sup><b>+</b></sup>) cations, and we contrast results on these with those for unsubstituted triethylpentylphosphonium (P<sub><b>2225</b></sub><sup><b>+</b></sup>). The article also introduces a physics-based protocol that combines classical force field studies on larger simulation boxes with classical and first-principles studies on smaller boxes. The method produces significantly improved <i>S</i>(<i>q</i>) functions in the regime which in prior publications we have associated with inter- and intraionic adjacency correlations. By understanding which shorter-range structural changes improve <i>S</i>(<i>q</i>) in the <i>q</i>-regime of interest, we are also able to pinpoint specific deficiencies in the classical force field model. The approach we take should be quite general and could help study other complex liquids on different length scales.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c00129","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents experimental characterization information and synchrotron X-ray scattering measurements on a set of novel O- and S-substituted phosphonium-based ionic liquids (ILs) all coupled with the bis(fluorosulfonyl)imide (FSI-) anion. The ILs include the ethoxyethyltriethylphosphonium (P222(2O2)+) and triethyl[2-(ethylthio)ethyl]phosphonium (P222(2S2)+) cations, and we contrast results on these with those for unsubstituted triethylpentylphosphonium (P2225+). The article also introduces a physics-based protocol that combines classical force field studies on larger simulation boxes with classical and first-principles studies on smaller boxes. The method produces significantly improved S(q) functions in the regime which in prior publications we have associated with inter- and intraionic adjacency correlations. By understanding which shorter-range structural changes improve S(q) in the q-regime of interest, we are also able to pinpoint specific deficiencies in the classical force field model. The approach we take should be quite general and could help study other complex liquids on different length scales.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.