Regulation of Protein Transport in Functionalized PET Nanopores.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Juanhua Kong, Rana Jahani, Haiyan Zheng, Shuo Zhou, Jun Chen, Sathishkumar Munusamy, Youwen Zhang, Xiyun Guan
{"title":"Regulation of Protein Transport in Functionalized PET Nanopores.","authors":"Juanhua Kong, Rana Jahani, Haiyan Zheng, Shuo Zhou, Jun Chen, Sathishkumar Munusamy, Youwen Zhang, Xiyun Guan","doi":"10.1021/acs.jpcb.5c01036","DOIUrl":null,"url":null,"abstract":"<p><p>Facilitated translocation is a critical mechanism for transporting substances in biological systems, where molecular and ionic species move across the biological membrane with the help of specific transmembrane protein ion channels. In this work, we systematically examined protein transport in three poly(ethylene terephthalate) (PET) nanopores modified with different types of surface functions (hydroxyl, phenyl, and amine). We found that the event signature as well as the kinetics and thermodynamics of protein movement in the PET nanopore varied significantly with the change in the surface function in the pore. In addition to the electrophoretic effect, other factors such as diffusion, electro-osmotic effect, ion selectivity of the channel, and affinity strength between the protein species and the surface functional group of the nanopore also play significant roles in the protein transport. Although properly functionalized individual PET nanopores can be used as stochastic elements for rapid protein differentiation and characterization, enhanced resolution and accuracy could be accomplished by employing an array of PET nanopores having different inner surface functional groups to characterize proteins based on their collective responses. Given the important roles proteins play in living organisms and their applications as biomarkers in early disease diagnosis and prognosis, the pattern-recognition solid-state nanopore-sensing strategy for protein detection and characterization developed in this work may find useful applications in various fields.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c01036","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Facilitated translocation is a critical mechanism for transporting substances in biological systems, where molecular and ionic species move across the biological membrane with the help of specific transmembrane protein ion channels. In this work, we systematically examined protein transport in three poly(ethylene terephthalate) (PET) nanopores modified with different types of surface functions (hydroxyl, phenyl, and amine). We found that the event signature as well as the kinetics and thermodynamics of protein movement in the PET nanopore varied significantly with the change in the surface function in the pore. In addition to the electrophoretic effect, other factors such as diffusion, electro-osmotic effect, ion selectivity of the channel, and affinity strength between the protein species and the surface functional group of the nanopore also play significant roles in the protein transport. Although properly functionalized individual PET nanopores can be used as stochastic elements for rapid protein differentiation and characterization, enhanced resolution and accuracy could be accomplished by employing an array of PET nanopores having different inner surface functional groups to characterize proteins based on their collective responses. Given the important roles proteins play in living organisms and their applications as biomarkers in early disease diagnosis and prognosis, the pattern-recognition solid-state nanopore-sensing strategy for protein detection and characterization developed in this work may find useful applications in various fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信