Dan Wen, Qi Wang, Jin Ding, Zilei Wang, Shiyu Lin, Hao Zhang, Xiaohong Huang, Xiaokun Ma, Xingguo Hou, Suping Li, Hua Zhu, Zhi Yang
{"title":"Construction of Bispecific T-Cell Engager Radiotracer and Its Micro-PET Evaluation in Pancreatic Cancer.","authors":"Dan Wen, Qi Wang, Jin Ding, Zilei Wang, Shiyu Lin, Hao Zhang, Xiaohong Huang, Xiaokun Ma, Xingguo Hou, Suping Li, Hua Zhu, Zhi Yang","doi":"10.1021/acs.molpharmaceut.5c00072","DOIUrl":null,"url":null,"abstract":"<p><p>Mucin 17 (MUC17), a transmembrane mucin, is overexpressed in pancreatic cancer and is associated with tumor proliferation and metastasis. CD3 is an indispensable molecule on the surface of T lymphocytes, which is associated with T cell activation and participates in immune responses. Here, we developed a bispecific T-cell engager radiotracer, <sup>89</sup>Zr-M17C3, targeting MUC17 and CD3, to enable noninvasive PET imaging of both tumor cells and T-cell infiltration in pancreatic cancer. <sup>89</sup>Zr-M17C3 was synthesized by conjugating AMG199 with zirconium-89 and verified for its radiochemical purity and in vitro stability. The <sup>89</sup>Zr-M17C3 probe demonstrated excellent radiochemical purity (>99%) and stability (maintained ≥99% over 120 h). Cellular uptake assays and binding affinity studies were conducted to evaluate the probe's specificity for MUC17 and CD3. Micro-PET/CT imaging and biodistribution studies were performed in MUC17-expressing nude mice and CD3 humanized mice to assess probe uptake in tumors and T-cell-infiltrated tissues. In MUC17-expressing AsPC-1 tumors, probe uptake was significantly higher than in MUC17-negative PANC-1 tumors (SUVmax: 2.26 ± 0.18 vs 1.13 ± 0.14, <i>P</i> < 0.001) and was confirmed to be MUC17-dependent through blocking studies. In CD3 humanized mice, the probe was able to visualize both T-cell infiltration and MUC17-positive tumors, with peak uptake in AsPC-1 tumors (SUVmax: 2.35 ± 0.46) and spleen (SUVmax: 2.19 ± 0.40) at 216 h. Immunohistochemical analysis confirmed the spatial correlation between MUC17 expression and CD3-positive T-cell infiltration in AsPC-1 tumors but not in PANC-1 tumors. In summary, the <sup>89</sup>Zr-M17C3 radiotracer exhibited high affinity for MUC17 and CD3 and successfully differentiated MUC17-positive tumors from MUC17-negative tumors while simultaneously providing insight into the T-cell distribution. This study highlights the potential of <sup>89</sup>Zr-M17C3 as a versatile imaging tool to support patient stratification and therapeutic monitoring in tumor-targeted immunotherapy, particularly for bispecific T-cell engager-based approaches such as AMG199.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"2276-2286"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mucin 17 (MUC17), a transmembrane mucin, is overexpressed in pancreatic cancer and is associated with tumor proliferation and metastasis. CD3 is an indispensable molecule on the surface of T lymphocytes, which is associated with T cell activation and participates in immune responses. Here, we developed a bispecific T-cell engager radiotracer, 89Zr-M17C3, targeting MUC17 and CD3, to enable noninvasive PET imaging of both tumor cells and T-cell infiltration in pancreatic cancer. 89Zr-M17C3 was synthesized by conjugating AMG199 with zirconium-89 and verified for its radiochemical purity and in vitro stability. The 89Zr-M17C3 probe demonstrated excellent radiochemical purity (>99%) and stability (maintained ≥99% over 120 h). Cellular uptake assays and binding affinity studies were conducted to evaluate the probe's specificity for MUC17 and CD3. Micro-PET/CT imaging and biodistribution studies were performed in MUC17-expressing nude mice and CD3 humanized mice to assess probe uptake in tumors and T-cell-infiltrated tissues. In MUC17-expressing AsPC-1 tumors, probe uptake was significantly higher than in MUC17-negative PANC-1 tumors (SUVmax: 2.26 ± 0.18 vs 1.13 ± 0.14, P < 0.001) and was confirmed to be MUC17-dependent through blocking studies. In CD3 humanized mice, the probe was able to visualize both T-cell infiltration and MUC17-positive tumors, with peak uptake in AsPC-1 tumors (SUVmax: 2.35 ± 0.46) and spleen (SUVmax: 2.19 ± 0.40) at 216 h. Immunohistochemical analysis confirmed the spatial correlation between MUC17 expression and CD3-positive T-cell infiltration in AsPC-1 tumors but not in PANC-1 tumors. In summary, the 89Zr-M17C3 radiotracer exhibited high affinity for MUC17 and CD3 and successfully differentiated MUC17-positive tumors from MUC17-negative tumors while simultaneously providing insight into the T-cell distribution. This study highlights the potential of 89Zr-M17C3 as a versatile imaging tool to support patient stratification and therapeutic monitoring in tumor-targeted immunotherapy, particularly for bispecific T-cell engager-based approaches such as AMG199.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.