Stacking Interactions of Druglike Heterocycles with Nucleobases.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Audrey V Conner, Lauren M Kim, Patrick A Fagan, Drew P Harding, Steven E Wheeler
{"title":"Stacking Interactions of Druglike Heterocycles with Nucleobases.","authors":"Audrey V Conner, Lauren M Kim, Patrick A Fagan, Drew P Harding, Steven E Wheeler","doi":"10.1021/acs.jcim.4c02420","DOIUrl":null,"url":null,"abstract":"<p><p>Stacking interactions contribute significantly to the interaction of small molecules with RNA, and harnessing the power of these interactions will likely prove important in the development of RNA-targeting inhibitors. To this end, we present a comprehensive computational analysis of stacking interactions between a set of 54 druglike heterocycles and the natural nucleobases. We first show that heterocycle choice can tune the strength of stacking interactions with nucleobases over a large range and that heterocycles favor stacked geometries that cluster around a discrete set of stacking loci characteristic of each nucleobase. Symmetry-adapted perturbation theory results indicate that the strengths of these interactions are modulated primarily by electrostatic and dispersion effects. Based on this, we present a multivariate predictive model of the maximum strength of stacking interactions between a given heterocycle and nucleobase that depends on molecular descriptors derived from the electrostatic potential. These descriptors can be readily computed using density functional theory or predicted directly from atom connectivity (e.g., SMILES). This model is used to predict the maximum possible stacking interactions of a set of 1854 druglike heterocycles with the natural nucleobases. Finally, we show that trivial modifications of standard (fixed-charge) molecular mechanics force fields reduce errors in predicted stacking interaction energies from around 2 kcal/mol to below 1 kcal/mol, providing a pragmatic means of predicting more reliable stacking interaction energies using existing computational workflows. We also analyze the stacking interactions between ribocil and a bacterial riboswitch, showing that two of the three aromatic heterocyclic components engage in near-optimal stacking interactions with binding site nucleobases.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02420","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stacking interactions contribute significantly to the interaction of small molecules with RNA, and harnessing the power of these interactions will likely prove important in the development of RNA-targeting inhibitors. To this end, we present a comprehensive computational analysis of stacking interactions between a set of 54 druglike heterocycles and the natural nucleobases. We first show that heterocycle choice can tune the strength of stacking interactions with nucleobases over a large range and that heterocycles favor stacked geometries that cluster around a discrete set of stacking loci characteristic of each nucleobase. Symmetry-adapted perturbation theory results indicate that the strengths of these interactions are modulated primarily by electrostatic and dispersion effects. Based on this, we present a multivariate predictive model of the maximum strength of stacking interactions between a given heterocycle and nucleobase that depends on molecular descriptors derived from the electrostatic potential. These descriptors can be readily computed using density functional theory or predicted directly from atom connectivity (e.g., SMILES). This model is used to predict the maximum possible stacking interactions of a set of 1854 druglike heterocycles with the natural nucleobases. Finally, we show that trivial modifications of standard (fixed-charge) molecular mechanics force fields reduce errors in predicted stacking interaction energies from around 2 kcal/mol to below 1 kcal/mol, providing a pragmatic means of predicting more reliable stacking interaction energies using existing computational workflows. We also analyze the stacking interactions between ribocil and a bacterial riboswitch, showing that two of the three aromatic heterocyclic components engage in near-optimal stacking interactions with binding site nucleobases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信