{"title":"Knowledge-Based Artificial Intelligence System for Drug Prioritization.","authors":"Yinchun Su, Jiashuo Wu, Xilong Zhao, Yue Hao, Ziyi Wang, Yongbao Zhang, Yujie Tang, Bingyue Pan, Guangyou Wang, Qingfei Kong, Junwei Han","doi":"10.1021/acs.jcim.5c00027","DOIUrl":null,"url":null,"abstract":"<p><p><i>In silico</i> drug prioritization may be a promising and time-saving strategy to identify potential drugs, standing as a faster and more cost-effective approach than <i>de novo</i> approaches. In recent years, artificial intelligence has greatly evolved the drug development process. Here, we present a novel computational framework for drug prioritization, <i>labyrinth</i>, designed to simulate human knowledge retrieval and inference to identify potential drug candidates for each disease. With the integration of up-to-date clinical trials, literature co-occurrences, drug-target interactions, and disease similarities, our framework achieves over 90% predictive accuracy across clinical trial phases and strong alignment with clinical practice in TCGA cohorts. We have demonstrated effectiveness across 20 different disease categories with robust ROC-AUC metrics and the balance between predictive accuracy and model interpretability. We further demonstrate its effectiveness at both the population and the individual levels. This study not only demonstrates the capacity for its drug prioritization but underscores the importance of aligning computational models with intuitive human reasoning. We have wrapped the core function into an R package named <i>labyrinth</i>, which is freely available on GitHub under the GPL-v2 license (https://github.com/hanjunwei-lab/labyrinth).</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00027","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In silico drug prioritization may be a promising and time-saving strategy to identify potential drugs, standing as a faster and more cost-effective approach than de novo approaches. In recent years, artificial intelligence has greatly evolved the drug development process. Here, we present a novel computational framework for drug prioritization, labyrinth, designed to simulate human knowledge retrieval and inference to identify potential drug candidates for each disease. With the integration of up-to-date clinical trials, literature co-occurrences, drug-target interactions, and disease similarities, our framework achieves over 90% predictive accuracy across clinical trial phases and strong alignment with clinical practice in TCGA cohorts. We have demonstrated effectiveness across 20 different disease categories with robust ROC-AUC metrics and the balance between predictive accuracy and model interpretability. We further demonstrate its effectiveness at both the population and the individual levels. This study not only demonstrates the capacity for its drug prioritization but underscores the importance of aligning computational models with intuitive human reasoning. We have wrapped the core function into an R package named labyrinth, which is freely available on GitHub under the GPL-v2 license (https://github.com/hanjunwei-lab/labyrinth).
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.