{"title":"Fitting Atomic Structures into Cryo-EM Maps by Coupling Deep Learning-Enhanced Map Processing with Global-Local Optimization.","authors":"Yaxian Cai, Ziying Zhang, Xiangyu Xu, Liang Xu, Yu Chen, Guijun Zhang, Xiaogen Zhou","doi":"10.1021/acs.jcim.5c00004","DOIUrl":null,"url":null,"abstract":"<p><p>With the breakthroughs in protein structure prediction technology, constructing atomic structures from cryo-electron microscopy (cryo-EM) density maps through structural fitting has become increasingly critical. However, the accuracy of the constructed models heavily relies on the precision of the structure-to-map fitting. In this study, we introduce DEMO-EMfit, a progressive method that integrates deep learning-based backbone map extraction with a global-local structural pose search to fit atomic structures into density maps. DEMO-EMfit was extensively evaluated on a benchmark data set comprising both cryo-electron tomography (cryo-ET) and cryo-EM maps of protein and nucleic acid complexes. The results demonstrate that DEMO-EMfit outperforms state-of-the-art approaches, offering an efficient and accurate tool for fitting atomic structures into density maps.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00004","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the breakthroughs in protein structure prediction technology, constructing atomic structures from cryo-electron microscopy (cryo-EM) density maps through structural fitting has become increasingly critical. However, the accuracy of the constructed models heavily relies on the precision of the structure-to-map fitting. In this study, we introduce DEMO-EMfit, a progressive method that integrates deep learning-based backbone map extraction with a global-local structural pose search to fit atomic structures into density maps. DEMO-EMfit was extensively evaluated on a benchmark data set comprising both cryo-electron tomography (cryo-ET) and cryo-EM maps of protein and nucleic acid complexes. The results demonstrate that DEMO-EMfit outperforms state-of-the-art approaches, offering an efficient and accurate tool for fitting atomic structures into density maps.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.