Dorna Ravamehr-Lake, Sahar Hoveyda, Michael Schlierf, Jonathon A Ditlev, Charles M Deber
{"title":"Interaction of CFTR Modulators with Mammalian Membrane Mimetics: The Role of Cholesterol.","authors":"Dorna Ravamehr-Lake, Sahar Hoveyda, Michael Schlierf, Jonathon A Ditlev, Charles M Deber","doi":"10.1021/acs.biochem.4c00780","DOIUrl":null,"url":null,"abstract":"<p><p>Lumacaftor and Ivacaftor are two FDA-approved medications currently used to treat cystic fibrosis (CF), a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel located in epithelial cell membranes; however, the detailed mechanism(s) of their action remains to be elucidated. Both drugs, termed modulators, bind CFTR at a protein-lipid interface, yet Lumacaftor acts at the endoplasmic reticulum (ER), while Ivacaftor acts at the plasma membrane (PM). A major difference among biological membranes is their level of cholesterol (viz., the ER, 5% cholesterol; the Golgi apparatus, 12.5%; and the PM, 30%). Therefore, we investigated the ability of each molecule to interact with membranes of the corresponding cholesterol content to determine if lipid cholesterol content provides a physical basis for their observed localized activity. Using differential scanning calorimetry and a terbium-based liposome disruption assay, we show that both Lumacaftor (a corrector) and Ivacaftor (a potentiator) penetrate/diffuse through membranes containing high cholesterol concentrations, such as in Golgi and the PM. The results further suggest that (1) Lumacaftor resides within membranes containing 5% cholesterol, supporting the proposition that Lumacaftor acts as a corrector of the CFTR channel at the ER level where the nascent protein is in its initial folding stage; and (2) Ivacaftor is well-suited to penetrate the PM and reach its binding pocket on CFTR. Our findings provide evidence that membrane cholesterol levels significantly modulate CFTR corrector/potentiator activity and consequently may affect sensitivity to clinical therapeutics in CF patients.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"1878-1886"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00780","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lumacaftor and Ivacaftor are two FDA-approved medications currently used to treat cystic fibrosis (CF), a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel located in epithelial cell membranes; however, the detailed mechanism(s) of their action remains to be elucidated. Both drugs, termed modulators, bind CFTR at a protein-lipid interface, yet Lumacaftor acts at the endoplasmic reticulum (ER), while Ivacaftor acts at the plasma membrane (PM). A major difference among biological membranes is their level of cholesterol (viz., the ER, 5% cholesterol; the Golgi apparatus, 12.5%; and the PM, 30%). Therefore, we investigated the ability of each molecule to interact with membranes of the corresponding cholesterol content to determine if lipid cholesterol content provides a physical basis for their observed localized activity. Using differential scanning calorimetry and a terbium-based liposome disruption assay, we show that both Lumacaftor (a corrector) and Ivacaftor (a potentiator) penetrate/diffuse through membranes containing high cholesterol concentrations, such as in Golgi and the PM. The results further suggest that (1) Lumacaftor resides within membranes containing 5% cholesterol, supporting the proposition that Lumacaftor acts as a corrector of the CFTR channel at the ER level where the nascent protein is in its initial folding stage; and (2) Ivacaftor is well-suited to penetrate the PM and reach its binding pocket on CFTR. Our findings provide evidence that membrane cholesterol levels significantly modulate CFTR corrector/potentiator activity and consequently may affect sensitivity to clinical therapeutics in CF patients.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.