Jörg Reichenwallner, Sebastian Michler, Christian Schwieger, Dariush Hinderberger
{"title":"Human Serum Albumin Loaded with Fatty Acids Reveals Complex Protein-Ligand Thermodynamics and Boleadora-Type Solution Dynamics Leading to Gelation.","authors":"Jörg Reichenwallner, Sebastian Michler, Christian Schwieger, Dariush Hinderberger","doi":"10.1021/acs.jpcb.4c08717","DOIUrl":null,"url":null,"abstract":"<p><p>Using an electron paramagnetic resonance (EPR) spectroscopic strategy that has been developed for core-shell polymers, the complexity of the binding of fatty acids to human serum albumin (HSA) is characterized in detail. We unravel the internal dynamics of HSA solutions with fatty acids by applying continuous wave EPR (CW EPR) from which we derive a consistent thermodynamic interpretation about fatty acid interactions with HSA in the investigated temperature range of 5-97 °C. Additionally, data from CW EPR are corroborated by dynamic light scattering (DLS), differential scanning calorimetry (DSC) and nanoscale distance measurements using double electron-electron resonance (DEER) spectroscopy. We discuss our data in light of decades of biophysical studies on albumin and aim at drawing a complete functional and dynamic picture of HSA \"at work\". This picture suggests that HSA is built from modular, rotationally decoupled domains that resemble an entangled three-piece <i>boleadora</i> in solution.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08717","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Using an electron paramagnetic resonance (EPR) spectroscopic strategy that has been developed for core-shell polymers, the complexity of the binding of fatty acids to human serum albumin (HSA) is characterized in detail. We unravel the internal dynamics of HSA solutions with fatty acids by applying continuous wave EPR (CW EPR) from which we derive a consistent thermodynamic interpretation about fatty acid interactions with HSA in the investigated temperature range of 5-97 °C. Additionally, data from CW EPR are corroborated by dynamic light scattering (DLS), differential scanning calorimetry (DSC) and nanoscale distance measurements using double electron-electron resonance (DEER) spectroscopy. We discuss our data in light of decades of biophysical studies on albumin and aim at drawing a complete functional and dynamic picture of HSA "at work". This picture suggests that HSA is built from modular, rotationally decoupled domains that resemble an entangled three-piece boleadora in solution.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.