{"title":"Enhancing Electric Vehicle Battery Performance and Safety Through IoT and Machine Learning: A Fire Prevention Approach","authors":"Uma S, R. Eswari","doi":"10.1002/ett.70112","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This research presents a comprehensive assessment and comparison of various battery technologies employed in EVs, including lithium-ion, nickel-metal hydride, solid-state, lithium iron phosphate, and sodium-ion batteries. A novel approach integrating IoT sensors and machine learning is proposed to monitor and analyze battery performance under real-world driving conditions, with a strong emphasis on fire prevention and safety. Through an extensive literature review, the inherent characteristics, advantages, and limitations of each battery type are explored. IoT sensors deployed in EVs can collect real-time data on important factors, such as voltage, current, temperature, and state of charge (SoC). Machine learning algorithms process this data to realize degradation patterns, optimize battery management strategies, and enhance charging protocols. By leveraging data-driven insights, this research aims to improve battery efficiency, extend lifespan, and mitigate fire hazards. The proposed approach achieves a battery performance prediction accuracy of 99.4%, reduces fire risk by 72%, and improves overall battery efficiency by 18.6% compared to conventional methods. Ultimately, the findings will contribute to the development of safer and more sustainable EV battery technologies, shaping the future of eco-friendly mobility.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70112","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents a comprehensive assessment and comparison of various battery technologies employed in EVs, including lithium-ion, nickel-metal hydride, solid-state, lithium iron phosphate, and sodium-ion batteries. A novel approach integrating IoT sensors and machine learning is proposed to monitor and analyze battery performance under real-world driving conditions, with a strong emphasis on fire prevention and safety. Through an extensive literature review, the inherent characteristics, advantages, and limitations of each battery type are explored. IoT sensors deployed in EVs can collect real-time data on important factors, such as voltage, current, temperature, and state of charge (SoC). Machine learning algorithms process this data to realize degradation patterns, optimize battery management strategies, and enhance charging protocols. By leveraging data-driven insights, this research aims to improve battery efficiency, extend lifespan, and mitigate fire hazards. The proposed approach achieves a battery performance prediction accuracy of 99.4%, reduces fire risk by 72%, and improves overall battery efficiency by 18.6% compared to conventional methods. Ultimately, the findings will contribute to the development of safer and more sustainable EV battery technologies, shaping the future of eco-friendly mobility.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications