Sara Lupacchini, Ron Stauder, Franz Opel, Stephan Klähn, Andreas Schmid, Bruno Bühler, Jörg Toepel
{"title":"Co-expression of auxiliary genes enhances the activity of a heterologous O2-tolerant hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803","authors":"Sara Lupacchini, Ron Stauder, Franz Opel, Stephan Klähn, Andreas Schmid, Bruno Bühler, Jörg Toepel","doi":"10.1186/s13068-025-02634-5","DOIUrl":null,"url":null,"abstract":"<div><p>Cyanobacteria bear great biotechnological potential as photosynthetic cell factories. In particular, hydrogenases are promising with respect to light-driven H<sub>2</sub> production as well as H<sub>2</sub>-driven redox biocatalysis. Their utilization relies on effective strain design as well as a balanced synthesis and maturation of heterologous enzymes. In a previous study, the soluble O<sub>2</sub>-tolerant hydrogenase complex from <i>Cupriavidus necator </i>(<i>Cn</i>SH) could be introduced into the model cyanobacterium <i>Synechocystis</i> sp. PCC 6803. Due to its O<sub>2</sub>-tolerance, it was indeed active under photoautotrophic growth conditions. However, the specific activity was rather low indicating that further engineering is required, for which we followed a two-step approach. First, we optimized the <i>Cn</i>SH multigene expression in <i>Synechocystis</i> by applying different regulatory elements. Although corresponding protein levels and specific <i>Cn</i>SH activity increased, the apparent rise in enzyme levels did not fully translate into activity increase. Second, the entire set of <i>hyp</i> genes, encoding <i>Cn</i>SH maturases, was co-expressed in <i>Synechocystis</i> to investigate, if <i>Cn</i>SH maturation was limiting. Indeed, the native <i>Cn</i>SH maturation apparatus promoted functional <i>Cn</i>SH synthesis, enabling a threefold higher H<sub>2</sub> oxidation activity compared to the parental strain. Our results suggest that a fine balance between heterologous hydrogenase and maturase expression is required to ensure high specific activity over an extended time period.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02634-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02634-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria bear great biotechnological potential as photosynthetic cell factories. In particular, hydrogenases are promising with respect to light-driven H2 production as well as H2-driven redox biocatalysis. Their utilization relies on effective strain design as well as a balanced synthesis and maturation of heterologous enzymes. In a previous study, the soluble O2-tolerant hydrogenase complex from Cupriavidus necator (CnSH) could be introduced into the model cyanobacterium Synechocystis sp. PCC 6803. Due to its O2-tolerance, it was indeed active under photoautotrophic growth conditions. However, the specific activity was rather low indicating that further engineering is required, for which we followed a two-step approach. First, we optimized the CnSH multigene expression in Synechocystis by applying different regulatory elements. Although corresponding protein levels and specific CnSH activity increased, the apparent rise in enzyme levels did not fully translate into activity increase. Second, the entire set of hyp genes, encoding CnSH maturases, was co-expressed in Synechocystis to investigate, if CnSH maturation was limiting. Indeed, the native CnSH maturation apparatus promoted functional CnSH synthesis, enabling a threefold higher H2 oxidation activity compared to the parental strain. Our results suggest that a fine balance between heterologous hydrogenase and maturase expression is required to ensure high specific activity over an extended time period.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis