{"title":"Dual-STGAT: Dual Spatio-Temporal Graph Attention Networks With Feature Fusion for Pedestrian Crossing Intention Prediction","authors":"Jing Lian;Yiyang Luo;Xuecheng Wang;Linhui Li;Ge Guo;Weiwei Ren;Tao Zhang","doi":"10.1109/TITS.2025.3528391","DOIUrl":null,"url":null,"abstract":"Pedestrian intent prediction is critical for autonomous driving, as accurately predicting crossing intentions helps prevent collisions and ensures the safety of both pedestrians and passengers. Recent research has focused on vision-based deep neural networks for this task, but challenges remain. First, current methods suffer from low efficiency in multi-feature fusion and unreliable predictions under challenging conditions. Additionally, real-time performance is essential in practical applications, so the efficiency of the algorithm is crucial. To address these issues, we propose a novel architecture, Dual-STGAT, which uses a dual-level spatio-temporal graph network to extract pedestrian pose and scene interaction features, reducing information loss and improving feature fusion efficiency. The model captures key features of pedestrian behavior and the surrounding environment through two modules: the Pedestrian Module and the Scene Module. The Pedestrian Module extracts pedestrian motion features using a spatio-temporal graph attention network, while the Scene Module models interactions between pedestrians and surrounding objects by integrating visual, semantic, and motion information through a graph network. Extensive experiments conducted on the PIE and JAAD datasets show that Dual-STGAT achieves over 90% accuracy in pedestrian crossing intention prediction, with inference latency close to 5ms, making it well-suited for large-scale production autonomous driving systems that demand both performance and computational efficiency.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"5396-5410"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10886901/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrian intent prediction is critical for autonomous driving, as accurately predicting crossing intentions helps prevent collisions and ensures the safety of both pedestrians and passengers. Recent research has focused on vision-based deep neural networks for this task, but challenges remain. First, current methods suffer from low efficiency in multi-feature fusion and unreliable predictions under challenging conditions. Additionally, real-time performance is essential in practical applications, so the efficiency of the algorithm is crucial. To address these issues, we propose a novel architecture, Dual-STGAT, which uses a dual-level spatio-temporal graph network to extract pedestrian pose and scene interaction features, reducing information loss and improving feature fusion efficiency. The model captures key features of pedestrian behavior and the surrounding environment through two modules: the Pedestrian Module and the Scene Module. The Pedestrian Module extracts pedestrian motion features using a spatio-temporal graph attention network, while the Scene Module models interactions between pedestrians and surrounding objects by integrating visual, semantic, and motion information through a graph network. Extensive experiments conducted on the PIE and JAAD datasets show that Dual-STGAT achieves over 90% accuracy in pedestrian crossing intention prediction, with inference latency close to 5ms, making it well-suited for large-scale production autonomous driving systems that demand both performance and computational efficiency.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.