Dual-STGAT: Dual Spatio-Temporal Graph Attention Networks With Feature Fusion for Pedestrian Crossing Intention Prediction

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Jing Lian;Yiyang Luo;Xuecheng Wang;Linhui Li;Ge Guo;Weiwei Ren;Tao Zhang
{"title":"Dual-STGAT: Dual Spatio-Temporal Graph Attention Networks With Feature Fusion for Pedestrian Crossing Intention Prediction","authors":"Jing Lian;Yiyang Luo;Xuecheng Wang;Linhui Li;Ge Guo;Weiwei Ren;Tao Zhang","doi":"10.1109/TITS.2025.3528391","DOIUrl":null,"url":null,"abstract":"Pedestrian intent prediction is critical for autonomous driving, as accurately predicting crossing intentions helps prevent collisions and ensures the safety of both pedestrians and passengers. Recent research has focused on vision-based deep neural networks for this task, but challenges remain. First, current methods suffer from low efficiency in multi-feature fusion and unreliable predictions under challenging conditions. Additionally, real-time performance is essential in practical applications, so the efficiency of the algorithm is crucial. To address these issues, we propose a novel architecture, Dual-STGAT, which uses a dual-level spatio-temporal graph network to extract pedestrian pose and scene interaction features, reducing information loss and improving feature fusion efficiency. The model captures key features of pedestrian behavior and the surrounding environment through two modules: the Pedestrian Module and the Scene Module. The Pedestrian Module extracts pedestrian motion features using a spatio-temporal graph attention network, while the Scene Module models interactions between pedestrians and surrounding objects by integrating visual, semantic, and motion information through a graph network. Extensive experiments conducted on the PIE and JAAD datasets show that Dual-STGAT achieves over 90% accuracy in pedestrian crossing intention prediction, with inference latency close to 5ms, making it well-suited for large-scale production autonomous driving systems that demand both performance and computational efficiency.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"5396-5410"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10886901/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrian intent prediction is critical for autonomous driving, as accurately predicting crossing intentions helps prevent collisions and ensures the safety of both pedestrians and passengers. Recent research has focused on vision-based deep neural networks for this task, but challenges remain. First, current methods suffer from low efficiency in multi-feature fusion and unreliable predictions under challenging conditions. Additionally, real-time performance is essential in practical applications, so the efficiency of the algorithm is crucial. To address these issues, we propose a novel architecture, Dual-STGAT, which uses a dual-level spatio-temporal graph network to extract pedestrian pose and scene interaction features, reducing information loss and improving feature fusion efficiency. The model captures key features of pedestrian behavior and the surrounding environment through two modules: the Pedestrian Module and the Scene Module. The Pedestrian Module extracts pedestrian motion features using a spatio-temporal graph attention network, while the Scene Module models interactions between pedestrians and surrounding objects by integrating visual, semantic, and motion information through a graph network. Extensive experiments conducted on the PIE and JAAD datasets show that Dual-STGAT achieves over 90% accuracy in pedestrian crossing intention prediction, with inference latency close to 5ms, making it well-suited for large-scale production autonomous driving systems that demand both performance and computational efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信