{"title":"QRS-Trs: Style Transfer-Based Image-to-Image Translation for Carbon Stock Estimation in Quantitative Remote Sensing","authors":"Zhenyu Yu;Jinnian Wang;Hanqing Chen;Mohd Yamani Idna Idris","doi":"10.1109/ACCESS.2025.3554045","DOIUrl":null,"url":null,"abstract":"Forests serve as vital carbon reservoirs, reducing atmospheric CO2 and mitigating climate change. Monitoring carbon stocks typically combines ground-based data with satellite remote sensing, yet accuracy remains a challenge. This study analyzes Huize County, China, using GF-1 WFV and Landsat TM images and introduces the Quantitative Remote Sensing Transformer (QRS-Trs), which leverages style transfer and attention mechanisms to enhance carbon stock estimation as an image-to-image translation task. QRS-Trs demonstrates three advantages: 1) Swin-Pix2Pix effectively reduces inter-domain discrepancies caused by sensor and lighting variations while excelling in de-clouding, outperforming Pix2Pix. 2) It incorporates a median filter to eliminate anomalies and a mask module to exclude non-target areas, achieving MAE =16.29 Mg/ha, RMSE =29.38 Mg/ha, <inline-formula> <tex-math>$R^{2} =0.71$ </tex-math></inline-formula>, and SSIM =0.75. 3) Applied to multi-year data, from 2005 to 2020, 44.04% of the area showed increased carbon stock, 10.22% decreased, and 45.74% remained unchanged. While QRS-Trs performs well, its generalization to diverse ecological conditions depends on high-quality training data. Nevertheless, this study provides a robust approach for high-resolution carbon stock estimation, contributing to improved forest carbon sink management.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"52726-52737"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937715","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10937715/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Forests serve as vital carbon reservoirs, reducing atmospheric CO2 and mitigating climate change. Monitoring carbon stocks typically combines ground-based data with satellite remote sensing, yet accuracy remains a challenge. This study analyzes Huize County, China, using GF-1 WFV and Landsat TM images and introduces the Quantitative Remote Sensing Transformer (QRS-Trs), which leverages style transfer and attention mechanisms to enhance carbon stock estimation as an image-to-image translation task. QRS-Trs demonstrates three advantages: 1) Swin-Pix2Pix effectively reduces inter-domain discrepancies caused by sensor and lighting variations while excelling in de-clouding, outperforming Pix2Pix. 2) It incorporates a median filter to eliminate anomalies and a mask module to exclude non-target areas, achieving MAE =16.29 Mg/ha, RMSE =29.38 Mg/ha, $R^{2} =0.71$ , and SSIM =0.75. 3) Applied to multi-year data, from 2005 to 2020, 44.04% of the area showed increased carbon stock, 10.22% decreased, and 45.74% remained unchanged. While QRS-Trs performs well, its generalization to diverse ecological conditions depends on high-quality training data. Nevertheless, this study provides a robust approach for high-resolution carbon stock estimation, contributing to improved forest carbon sink management.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.