Optimal Real-Time Bidding Strategy for EV Aggregators in Wholesale Electricity Markets

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Shihan Huang;Dongkun Han;John Zhen Fu Pang;Yue Chen
{"title":"Optimal Real-Time Bidding Strategy for EV Aggregators in Wholesale Electricity Markets","authors":"Shihan Huang;Dongkun Han;John Zhen Fu Pang;Yue Chen","doi":"10.1109/TITS.2025.3536857","DOIUrl":null,"url":null,"abstract":"With the rapid growth of electric vehicles (EVs), EV aggregators have been playing an increasingly vital role in power systems by not merely providing charging management but also participating in wholesale electricity markets. This work studies the optimal real-time bidding strategy for an EV aggregator. Since the charging process of EVs is time-coupled, it is necessary for EV aggregators to consider future operational conditions (e.g., future EV arrivals) when deciding the current bidding strategy. However, accurately forecasting future operational conditions is challenging under the inherent uncertainties. Hence, there demands a real-time bidding strategy based solely on the up-to-date information, which is the main goal of this work. We start by developing an online optimal EV charging management algorithm for the EV aggregator via Lyapunov optimization. Based on this, an optimal real-time bidding strategy (bidding function and bounds) for the aggregator is derived. Then, an efficient yet practical algorithm is proposed to obtain the bidding strategy. It shows that the cost of the aggregator is nearly offline optimal with the proposed bidding strategy. Moreover, the wholesale electricity market clearing result aligns with the individual aggregator’s optimal charging strategy given the prices. Case studies against several benchmarks are conducted to evaluate the performance of the proposed method.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"5538-5551"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10879415/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid growth of electric vehicles (EVs), EV aggregators have been playing an increasingly vital role in power systems by not merely providing charging management but also participating in wholesale electricity markets. This work studies the optimal real-time bidding strategy for an EV aggregator. Since the charging process of EVs is time-coupled, it is necessary for EV aggregators to consider future operational conditions (e.g., future EV arrivals) when deciding the current bidding strategy. However, accurately forecasting future operational conditions is challenging under the inherent uncertainties. Hence, there demands a real-time bidding strategy based solely on the up-to-date information, which is the main goal of this work. We start by developing an online optimal EV charging management algorithm for the EV aggregator via Lyapunov optimization. Based on this, an optimal real-time bidding strategy (bidding function and bounds) for the aggregator is derived. Then, an efficient yet practical algorithm is proposed to obtain the bidding strategy. It shows that the cost of the aggregator is nearly offline optimal with the proposed bidding strategy. Moreover, the wholesale electricity market clearing result aligns with the individual aggregator’s optimal charging strategy given the prices. Case studies against several benchmarks are conducted to evaluate the performance of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信