Jingping Yu , Weishuo Kong , Dali Wang , Yingcai Fan , Yang Liu
{"title":"Theoretical insights into the co-delivery of paclitaxel and doxorubicin on two-dimensional covalent organic frameworks","authors":"Jingping Yu , Weishuo Kong , Dali Wang , Yingcai Fan , Yang Liu","doi":"10.1016/j.comptc.2025.115216","DOIUrl":null,"url":null,"abstract":"<div><div>Targeting drug delivery systems (DDS) based 2D covalent organic frameworks (COFs) have attracted more and more attention. However, there are still few reports on 2D COFs-based DDS with pH responsive release of PTX drugs. In this paper, we systematically studied the interactions between PTX molecules and COFs carrier by all-atom molecular dynamics simulations. Our results suggest that surfaces and cavities of COFs play different roles in drug delivery. For the TTI monolayer, the decrease of adsorption sites is detrimental to the adsorption of PTX molecules. Interestingly, the combined delivery of PTX and DOX can enhance the adsorption of PTX molecules on TTI monolayer and achieve pH-responsive release. For the TTI multilayer, the cavity enhanced the drugs adsorption while inhibiting the pH-responsive release of the PTX. Our study reveals the mechanism of COFs-based drug delivery system loaded with PTX drugs, which provides a promising way for applications in cancer nanomedicine.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1248 ","pages":"Article 115216"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25001525","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting drug delivery systems (DDS) based 2D covalent organic frameworks (COFs) have attracted more and more attention. However, there are still few reports on 2D COFs-based DDS with pH responsive release of PTX drugs. In this paper, we systematically studied the interactions between PTX molecules and COFs carrier by all-atom molecular dynamics simulations. Our results suggest that surfaces and cavities of COFs play different roles in drug delivery. For the TTI monolayer, the decrease of adsorption sites is detrimental to the adsorption of PTX molecules. Interestingly, the combined delivery of PTX and DOX can enhance the adsorption of PTX molecules on TTI monolayer and achieve pH-responsive release. For the TTI multilayer, the cavity enhanced the drugs adsorption while inhibiting the pH-responsive release of the PTX. Our study reveals the mechanism of COFs-based drug delivery system loaded with PTX drugs, which provides a promising way for applications in cancer nanomedicine.
期刊介绍:
Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.