Amarjit Budhiraja , Adam Waterbury , Pavlos Zoubouloglou
{"title":"Large deviations for empirical measures of self-interacting Markov chains","authors":"Amarjit Budhiraja , Adam Waterbury , Pavlos Zoubouloglou","doi":"10.1016/j.spa.2025.104640","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mi>o</mi></mrow></msup></math></span> be a finite set and, for each probability measure <span><math><mi>m</mi></math></span> on <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mi>o</mi></mrow></msup></math></span>, let <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span> be a transition kernel on <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mi>o</mi></mrow></msup></math></span>. Consider the sequence <span><math><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></math></span> of <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mi>o</mi></mrow></msup></math></span>-valued random variables such that, given <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, the conditional distribution of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> is <span><math><mrow><mi>G</mi><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>δ</mi></mrow><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></mrow></math></span>. Under conditions on <span><math><mi>G</mi></math></span> we establish a large deviation principle for the sequence <span><math><mrow><mo>{</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>}</mo></mrow></math></span>. As one application of this result we obtain large deviation asymptotics for the Aldous et al. (1988) approximation scheme for quasi-stationary distributions of finite state Markov chains. The conditions on <span><math><mi>G</mi></math></span> cover other models as well, including certain models with edge or vertex reinforcement.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"186 ","pages":"Article 104640"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492500081X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite set and, for each probability measure on , let be a transition kernel on . Consider the sequence of -valued random variables such that, given , the conditional distribution of is , where . Under conditions on we establish a large deviation principle for the sequence . As one application of this result we obtain large deviation asymptotics for the Aldous et al. (1988) approximation scheme for quasi-stationary distributions of finite state Markov chains. The conditions on cover other models as well, including certain models with edge or vertex reinforcement.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.