{"title":"Large language model for patent concept generation","authors":"Runtao Ren , Jian Ma , Jianxi Luo","doi":"10.1016/j.aei.2025.103301","DOIUrl":null,"url":null,"abstract":"<div><div>In traditional innovation practices, concept and IP generation are often iteratively integrated. Both processes demand an intricate understanding of advanced technical domain knowledge. Existing large language models (LLMs), while possessing massive pre-trained knowledge, often fall short in the innovative concept generation due to a lack of specialized knowledge necessary for the generation. To bridge this critical gap, we propose a novel knowledge finetuning (KFT) framework to endow LLM-based AI with the ability to autonomously mine, understand, and apply domain-specific knowledge and concepts for invention generation, i.e., concept and patent generation together. Our proposed PatentGPT integrates knowledge injection pre-training (KPT), domain-specific supervised finetuning (SFT), and reinforcement learning from human feedback (RLHF). Extensive evaluation shows that PatentGPT significantly outperforms the state-of-the-art models on patent-related benchmark tests. Our method not only provides new insights into data-driven innovation but also paves a new path to fine-tune LLMs for applications in the context of technology. We also discuss the managerial and policy implications of AI-generating inventions in the future.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103301"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625001946","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In traditional innovation practices, concept and IP generation are often iteratively integrated. Both processes demand an intricate understanding of advanced technical domain knowledge. Existing large language models (LLMs), while possessing massive pre-trained knowledge, often fall short in the innovative concept generation due to a lack of specialized knowledge necessary for the generation. To bridge this critical gap, we propose a novel knowledge finetuning (KFT) framework to endow LLM-based AI with the ability to autonomously mine, understand, and apply domain-specific knowledge and concepts for invention generation, i.e., concept and patent generation together. Our proposed PatentGPT integrates knowledge injection pre-training (KPT), domain-specific supervised finetuning (SFT), and reinforcement learning from human feedback (RLHF). Extensive evaluation shows that PatentGPT significantly outperforms the state-of-the-art models on patent-related benchmark tests. Our method not only provides new insights into data-driven innovation but also paves a new path to fine-tune LLMs for applications in the context of technology. We also discuss the managerial and policy implications of AI-generating inventions in the future.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.