{"title":"Linear covariance selection model via ℓ1-penalization","authors":"Kwan-Young Bak , Seongoh Park","doi":"10.1016/j.csda.2025.108176","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a study on an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-penalized covariance regression method. Conventional approaches in high-dimensional covariance estimation often lack the flexibility to integrate external information. As a remedy, we adopt the regression-based covariance modeling framework and introduce a linear covariance selection model (LCSM) to encompass a broader spectrum of covariance structures when covariate information is available. Unlike existing methods, we do not assume that the true covariance matrix can be exactly represented by a linear combination of known basis matrices. Instead, we adopt additional basis matrices for a portion of the covariance patterns not captured by the given bases. To estimate high-dimensional regression coefficients, we exploit the sparsity-inducing <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-penalization scheme. Our theoretical analyses are based on the (symmetric) matrix regression model with additive random error matrix, which allows us to establish new non-asymptotic convergence rates of the proposed covariance estimator. The proposed method is implemented with the coordinate descent algorithm. We conduct empirical evaluation on simulated data to complement theoretical findings and underscore the efficacy of our approach. To show a practical applicability of our method, we further apply it to the co-expression analysis of liver gene expression data where the given basis corresponds to the adjacency matrix of the co-expression network.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"209 ","pages":"Article 108176"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000520","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a study on an -penalized covariance regression method. Conventional approaches in high-dimensional covariance estimation often lack the flexibility to integrate external information. As a remedy, we adopt the regression-based covariance modeling framework and introduce a linear covariance selection model (LCSM) to encompass a broader spectrum of covariance structures when covariate information is available. Unlike existing methods, we do not assume that the true covariance matrix can be exactly represented by a linear combination of known basis matrices. Instead, we adopt additional basis matrices for a portion of the covariance patterns not captured by the given bases. To estimate high-dimensional regression coefficients, we exploit the sparsity-inducing -penalization scheme. Our theoretical analyses are based on the (symmetric) matrix regression model with additive random error matrix, which allows us to establish new non-asymptotic convergence rates of the proposed covariance estimator. The proposed method is implemented with the coordinate descent algorithm. We conduct empirical evaluation on simulated data to complement theoretical findings and underscore the efficacy of our approach. To show a practical applicability of our method, we further apply it to the co-expression analysis of liver gene expression data where the given basis corresponds to the adjacency matrix of the co-expression network.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]