Assessment of gully erosion susceptibility using four data-driven models AHP, FR, RF and XGBoosting machine learning algorithms

Md Hasanuzzaman , Pravat Shit
{"title":"Assessment of gully erosion susceptibility using four data-driven models AHP, FR, RF and XGBoosting machine learning algorithms","authors":"Md Hasanuzzaman ,&nbsp;Pravat Shit","doi":"10.1016/j.nhres.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Gully erosion is a significant global threat to socioeconomic and environmental sustainability, making it a widespread natural hazard. Developing spatial models for gully erosion is crucial for local governance to effectively implement mitigation measures and promote regional development. This study applied two machine learning (ML) models, RF and XGB, alongside an AHP-based multi-criteria decision method and FR bivariate statistics, to assess gully erosion susceptibility (GES) in the Kangsabati River basin in eastern India's Chotonagpur plateau fringe. A GIS database was created, incorporating recorded gully erosion incidents and 20 conditioning variables, which were evaluated for multicollinearity. These variables served as predictive factors for assessing gully erosion presence in the study area. The models' performance was evaluated using metrics such as RMSE, MAE, specificity, sensitivity, and accuracy. The XGB model outperformed the others, achieving a predictive accuracy of 90.22%. The study found that approximately 6.56% of the Kangsabati catchment is highly susceptible to gully erosion, with 12.39% moderately susceptible and 81.05% not susceptible. The XGB model had the highest ROC value of 85.5 during testing, indicating its superiority over the FR (ROC ​= ​81.7), AHP (ROC ​= ​79.8), and RF (ROC ​= ​83.8) models. These findings highlight the XGB model's efficacy and potential for large-scale GES mapping.</div></div>","PeriodicalId":100943,"journal":{"name":"Natural Hazards Research","volume":"5 1","pages":"Pages 36-47"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666592124000362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gully erosion is a significant global threat to socioeconomic and environmental sustainability, making it a widespread natural hazard. Developing spatial models for gully erosion is crucial for local governance to effectively implement mitigation measures and promote regional development. This study applied two machine learning (ML) models, RF and XGB, alongside an AHP-based multi-criteria decision method and FR bivariate statistics, to assess gully erosion susceptibility (GES) in the Kangsabati River basin in eastern India's Chotonagpur plateau fringe. A GIS database was created, incorporating recorded gully erosion incidents and 20 conditioning variables, which were evaluated for multicollinearity. These variables served as predictive factors for assessing gully erosion presence in the study area. The models' performance was evaluated using metrics such as RMSE, MAE, specificity, sensitivity, and accuracy. The XGB model outperformed the others, achieving a predictive accuracy of 90.22%. The study found that approximately 6.56% of the Kangsabati catchment is highly susceptible to gully erosion, with 12.39% moderately susceptible and 81.05% not susceptible. The XGB model had the highest ROC value of 85.5 during testing, indicating its superiority over the FR (ROC ​= ​81.7), AHP (ROC ​= ​79.8), and RF (ROC ​= ​83.8) models. These findings highlight the XGB model's efficacy and potential for large-scale GES mapping.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信