Spatial-temporal assessment of soil erosion using the RUSLE model in the upstream Inaouène watershed, Northern Morocco

Chakir Hamouch , Jamal Chaaouan , Charaf eddine Bouiss
{"title":"Spatial-temporal assessment of soil erosion using the RUSLE model in the upstream Inaouène watershed, Northern Morocco","authors":"Chakir Hamouch ,&nbsp;Jamal Chaaouan ,&nbsp;Charaf eddine Bouiss","doi":"10.1016/j.nhres.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to assess the risk of soil erosion in two different years (1984 and 2022) to gain insights into the extent of soil loss risk in the study area spatially and temporally. Using the Revised Universal Soil Loss Equation (RUSLE), which evaluates the soil loss rate, focusing primarily on erosivity of rainfall \"R,\" soil erodibility \"K,\" vegetation cover \"C,\" topography \"LS,\" and anti-erosion practices \"P.\" To achieve this, we incorporated various factors of the equation into a Geographic Information System (GIS) and spatial remote sensing. By overlaying these factors, we obtained a quantitative map of soil losses in our watershed. The results of this work show that the upstream Inaouène experienced a strong erosion dynamic in both 1985 and 2022, with a notable decrease in the amount of soil loss in the last year. Soil degradation in 1985 had an average of about 68 (T/ha/year), with maximum and minimum losses between 2162 and 0.067 ​T/ha/year, while losses in 2022 recorded an average of 52.4 (T/ha/year), with a maximum of 1850 (T/ha/year). The study area represents very high quantities of losses in both periods compared to several studies conducted in this region using the same model. This is due to the fact that the study area is located in a region characterized by very favorable natural and human conditions and factors to trigger and promote significant soil losses, including concentrated and intense rainfall, the predominance of fragile rocks, steep slopes, low vegetation cover in the eastern and southeastern part of the terrain, in addition to irrational human interference with the land.</div></div>","PeriodicalId":100943,"journal":{"name":"Natural Hazards Research","volume":"5 1","pages":"Pages 148-156"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666592124000593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to assess the risk of soil erosion in two different years (1984 and 2022) to gain insights into the extent of soil loss risk in the study area spatially and temporally. Using the Revised Universal Soil Loss Equation (RUSLE), which evaluates the soil loss rate, focusing primarily on erosivity of rainfall "R," soil erodibility "K," vegetation cover "C," topography "LS," and anti-erosion practices "P." To achieve this, we incorporated various factors of the equation into a Geographic Information System (GIS) and spatial remote sensing. By overlaying these factors, we obtained a quantitative map of soil losses in our watershed. The results of this work show that the upstream Inaouène experienced a strong erosion dynamic in both 1985 and 2022, with a notable decrease in the amount of soil loss in the last year. Soil degradation in 1985 had an average of about 68 (T/ha/year), with maximum and minimum losses between 2162 and 0.067 ​T/ha/year, while losses in 2022 recorded an average of 52.4 (T/ha/year), with a maximum of 1850 (T/ha/year). The study area represents very high quantities of losses in both periods compared to several studies conducted in this region using the same model. This is due to the fact that the study area is located in a region characterized by very favorable natural and human conditions and factors to trigger and promote significant soil losses, including concentrated and intense rainfall, the predominance of fragile rocks, steep slopes, low vegetation cover in the eastern and southeastern part of the terrain, in addition to irrational human interference with the land.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信