Roquia Salam , Filiberto Pla , Bayes Ahmed , Marco Painho
{"title":"A Convolutional Neural Network-based approach for automatically detecting rainfall-induced shallow landslides in a data-sparse context","authors":"Roquia Salam , Filiberto Pla , Bayes Ahmed , Marco Painho","doi":"10.1016/j.nhres.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting rainfall-induced shallow landslides in data-sparse regions has become increasingly important for effective landslides disaster management. Previous studies have predominantly focused on automated methods for deep-seated, earthquake-triggered landslides. This study addresses this gap by employing a U-net Convolutional Neural Network (CNN) model to detect rainfall-induced shallow landslides using multi-temporal, high-resolution PlanetScope (3m spatial resolution), medium-resolution Sentinel-2 (10m spatial resolution) imagery, and ALOS-PALSAR-provided digital elevation model (DEM). Four datasets were created: Datasets A and B using PlanetScope, and Datasets C and D using Sentinel-2, with Datasets B and D also including DEM data. A total of 181 manually delineated landslide polygons were used as ground truth masks. Each dataset was tested using repeated stratified hold-out validation. Performance metrics included precision, recall, F1 score, loss, and accuracy. Results indicated that Datasets A and B outperformed the others; however, integrating DEM with Dataset B did not enhance model accuracy. The best mean precision, recall, F1 score, loss, and accuracy were 1, 0.625, 0.625, 0.380, and 0.999, respectively, for both Datasets A and B. This study demonstrates the U-net model's potential for detecting rainfall-induced shallow landslides in various geographic and temporal contexts globally.</div></div>","PeriodicalId":100943,"journal":{"name":"Natural Hazards Research","volume":"5 1","pages":"Pages 175-186"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666592124000726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting rainfall-induced shallow landslides in data-sparse regions has become increasingly important for effective landslides disaster management. Previous studies have predominantly focused on automated methods for deep-seated, earthquake-triggered landslides. This study addresses this gap by employing a U-net Convolutional Neural Network (CNN) model to detect rainfall-induced shallow landslides using multi-temporal, high-resolution PlanetScope (3m spatial resolution), medium-resolution Sentinel-2 (10m spatial resolution) imagery, and ALOS-PALSAR-provided digital elevation model (DEM). Four datasets were created: Datasets A and B using PlanetScope, and Datasets C and D using Sentinel-2, with Datasets B and D also including DEM data. A total of 181 manually delineated landslide polygons were used as ground truth masks. Each dataset was tested using repeated stratified hold-out validation. Performance metrics included precision, recall, F1 score, loss, and accuracy. Results indicated that Datasets A and B outperformed the others; however, integrating DEM with Dataset B did not enhance model accuracy. The best mean precision, recall, F1 score, loss, and accuracy were 1, 0.625, 0.625, 0.380, and 0.999, respectively, for both Datasets A and B. This study demonstrates the U-net model's potential for detecting rainfall-induced shallow landslides in various geographic and temporal contexts globally.