A Convolutional Neural Network-based approach for automatically detecting rainfall-induced shallow landslides in a data-sparse context

Roquia Salam , Filiberto Pla , Bayes Ahmed , Marco Painho
{"title":"A Convolutional Neural Network-based approach for automatically detecting rainfall-induced shallow landslides in a data-sparse context","authors":"Roquia Salam ,&nbsp;Filiberto Pla ,&nbsp;Bayes Ahmed ,&nbsp;Marco Painho","doi":"10.1016/j.nhres.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting rainfall-induced shallow landslides in data-sparse regions has become increasingly important for effective landslides disaster management. Previous studies have predominantly focused on automated methods for deep-seated, earthquake-triggered landslides. This study addresses this gap by employing a U-net Convolutional Neural Network (CNN) model to detect rainfall-induced shallow landslides using multi-temporal, high-resolution PlanetScope (3m spatial resolution), medium-resolution Sentinel-2 (10m spatial resolution) imagery, and ALOS-PALSAR-provided digital elevation model (DEM). Four datasets were created: Datasets A and B using PlanetScope, and Datasets C and D using Sentinel-2, with Datasets B and D also including DEM data. A total of 181 manually delineated landslide polygons were used as ground truth masks. Each dataset was tested using repeated stratified hold-out validation. Performance metrics included precision, recall, F1 score, loss, and accuracy. Results indicated that Datasets A and B outperformed the others; however, integrating DEM with Dataset B did not enhance model accuracy. The best mean precision, recall, F1 score, loss, and accuracy were 1, 0.625, 0.625, 0.380, and 0.999, respectively, for both Datasets A and B. This study demonstrates the U-net model's potential for detecting rainfall-induced shallow landslides in various geographic and temporal contexts globally.</div></div>","PeriodicalId":100943,"journal":{"name":"Natural Hazards Research","volume":"5 1","pages":"Pages 175-186"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666592124000726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting rainfall-induced shallow landslides in data-sparse regions has become increasingly important for effective landslides disaster management. Previous studies have predominantly focused on automated methods for deep-seated, earthquake-triggered landslides. This study addresses this gap by employing a U-net Convolutional Neural Network (CNN) model to detect rainfall-induced shallow landslides using multi-temporal, high-resolution PlanetScope (3m spatial resolution), medium-resolution Sentinel-2 (10m spatial resolution) imagery, and ALOS-PALSAR-provided digital elevation model (DEM). Four datasets were created: Datasets A and B using PlanetScope, and Datasets C and D using Sentinel-2, with Datasets B and D also including DEM data. A total of 181 manually delineated landslide polygons were used as ground truth masks. Each dataset was tested using repeated stratified hold-out validation. Performance metrics included precision, recall, F1 score, loss, and accuracy. Results indicated that Datasets A and B outperformed the others; however, integrating DEM with Dataset B did not enhance model accuracy. The best mean precision, recall, F1 score, loss, and accuracy were 1, 0.625, 0.625, 0.380, and 0.999, respectively, for both Datasets A and B. This study demonstrates the U-net model's potential for detecting rainfall-induced shallow landslides in various geographic and temporal contexts globally.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信