A Physics-Integrated Deep Learning Approach for Patient-Specific Non-Newtonian Blood Viscosity Assessment using PPG

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hyeong Jun Lee , Young Woo Kim , Seung Yong Shin , San Lee Lee , Chae Hyeon Kim , Kyung Soo Chung , Joon Sang Lee
{"title":"A Physics-Integrated Deep Learning Approach for Patient-Specific Non-Newtonian Blood Viscosity Assessment using PPG","authors":"Hyeong Jun Lee ,&nbsp;Young Woo Kim ,&nbsp;Seung Yong Shin ,&nbsp;San Lee Lee ,&nbsp;Chae Hyeon Kim ,&nbsp;Kyung Soo Chung ,&nbsp;Joon Sang Lee","doi":"10.1016/j.cmpb.2025.108740","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>The aim of this study is to extract a patient-specific viscosity equation from photoplethysmography (PPG) data. An aging society has increased the need for remote, non-invasive health monitoring systems. However, the circulatory system remains beyond the scope of wearable devices. The solution might be found in the possibility of measuring blood viscosity from wearable devices. Blood viscosity information can be used to monitor and diagnose various circulatory system diseases. Therefore, if blood viscosity can be calculated from wearable photoplethysmography, the versatility of a non-invasive health monitoring system can be broadened.</div></div><div><h3>Methods</h3><div>A hybrid 1D CNN-LSTM architecture incorporating physics-informed constraints was developed to integrate rheological principles into data-driven PPG analysis. The shear-viscosity equation derived from the viscometer was used as ground-truth data. The signal obtained from the wearable devices was processed with noise filtering and wandering elimination to gain stable blood pressure waves. The neural network was trained using k-fold cross-validation and weight factor optimization, with the loss function incorporating rheological constraints from the Carreau–Yasuda model.</div></div><div><h3>Results</h3><div>The final estimation model achieved an accuracy of 81.1 %. The accuracy in the physiological shear range (50–300 s<sup>-1</sup>) was 84.0 %, outperforming other low and high shear regions. Mean absolute errors of 0.67 cP in the physiological range align with clinical viscometry tolerances (&lt; 1 cP), demonstrating diagnostic feasibility. Statistical analysis revealed strong linear relationships between predicted and ground truth values across all shear rates (correlation coefficients: 0.619–0.742, <em>p</em> &lt; 0.0001), with mean absolute errors decreasing from 7.84 cP at low shear rates to 0.67 cP in the physiological range. The accuracy and contribution of each parameter to the Carreau–Yasuda model were also analyzed. The results show that the contribution of each parameter varies based on the shear range, providing insight into weight factor optimization.</div></div><div><h3>Conclusion</h3><div>By non-invasively estimating blood viscosity from PPG, the diagnostic capabilities of wearable healthcare systems can be expanded to target various diseases related to the circulatory system. The demonstrated accuracy in physiologically relevant shear ranges supports the potential clinical application of this methodology.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"265 ","pages":"Article 108740"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001579","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective

The aim of this study is to extract a patient-specific viscosity equation from photoplethysmography (PPG) data. An aging society has increased the need for remote, non-invasive health monitoring systems. However, the circulatory system remains beyond the scope of wearable devices. The solution might be found in the possibility of measuring blood viscosity from wearable devices. Blood viscosity information can be used to monitor and diagnose various circulatory system diseases. Therefore, if blood viscosity can be calculated from wearable photoplethysmography, the versatility of a non-invasive health monitoring system can be broadened.

Methods

A hybrid 1D CNN-LSTM architecture incorporating physics-informed constraints was developed to integrate rheological principles into data-driven PPG analysis. The shear-viscosity equation derived from the viscometer was used as ground-truth data. The signal obtained from the wearable devices was processed with noise filtering and wandering elimination to gain stable blood pressure waves. The neural network was trained using k-fold cross-validation and weight factor optimization, with the loss function incorporating rheological constraints from the Carreau–Yasuda model.

Results

The final estimation model achieved an accuracy of 81.1 %. The accuracy in the physiological shear range (50–300 s-1) was 84.0 %, outperforming other low and high shear regions. Mean absolute errors of 0.67 cP in the physiological range align with clinical viscometry tolerances (< 1 cP), demonstrating diagnostic feasibility. Statistical analysis revealed strong linear relationships between predicted and ground truth values across all shear rates (correlation coefficients: 0.619–0.742, p < 0.0001), with mean absolute errors decreasing from 7.84 cP at low shear rates to 0.67 cP in the physiological range. The accuracy and contribution of each parameter to the Carreau–Yasuda model were also analyzed. The results show that the contribution of each parameter varies based on the shear range, providing insight into weight factor optimization.

Conclusion

By non-invasively estimating blood viscosity from PPG, the diagnostic capabilities of wearable healthcare systems can be expanded to target various diseases related to the circulatory system. The demonstrated accuracy in physiologically relevant shear ranges supports the potential clinical application of this methodology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信