{"title":"Advancements in crop mapping through remote sensing: A comprehensive review of concept, data sources, and procedures over four decades","authors":"Iman Khosravi","doi":"10.1016/j.rsase.2025.101527","DOIUrl":null,"url":null,"abstract":"<div><div>Crop mapping, vital for informed decision-making in agricultural and food planning, relies on accurate and current information about the distribution of agronomic lands. Remote Sensing and Earth Observation technologies have emerged as indispensable tools, providing up-to-date data and images in diverse spatial and temporal resolutions, offering a practical and cost-effective alternative to traditional methods. This paper surveys over 400 publications spanning four decades, with a notable increase in studies after 2010, focusing on crop mapping and monitoring using remote sensing imagery. Categorizing these studies based on the type of remote sensing data utilized—optical, radar, or a combination thereof—it also delves into the diverse strategies employed, including attributes used, processing units, and classification algorithms. To date, there has not been a comprehensive review study specifically focused on crop mapping. This paper emphasizes the innovations and advancements in remote sensing technologies and their applications in crop mapping. It highlights the integration of cutting-edge deep learning techniques, the utilization of high-resolution satellite data, and the development of hybrid models that combine multiple data sources for enhanced accuracy. Furthermore, this review identifies emerging trends and future directions in the field, offering insights into the potential of new technologies and methodologies. Through this comprehensive overview of crop mapping studies published in reputable scientific journals between 1980 and 2024, we illuminate the dynamic landscape of this field and underscore the unique contributions of our review to the existing body of literature.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"38 ","pages":"Article 101527"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525000801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Crop mapping, vital for informed decision-making in agricultural and food planning, relies on accurate and current information about the distribution of agronomic lands. Remote Sensing and Earth Observation technologies have emerged as indispensable tools, providing up-to-date data and images in diverse spatial and temporal resolutions, offering a practical and cost-effective alternative to traditional methods. This paper surveys over 400 publications spanning four decades, with a notable increase in studies after 2010, focusing on crop mapping and monitoring using remote sensing imagery. Categorizing these studies based on the type of remote sensing data utilized—optical, radar, or a combination thereof—it also delves into the diverse strategies employed, including attributes used, processing units, and classification algorithms. To date, there has not been a comprehensive review study specifically focused on crop mapping. This paper emphasizes the innovations and advancements in remote sensing technologies and their applications in crop mapping. It highlights the integration of cutting-edge deep learning techniques, the utilization of high-resolution satellite data, and the development of hybrid models that combine multiple data sources for enhanced accuracy. Furthermore, this review identifies emerging trends and future directions in the field, offering insights into the potential of new technologies and methodologies. Through this comprehensive overview of crop mapping studies published in reputable scientific journals between 1980 and 2024, we illuminate the dynamic landscape of this field and underscore the unique contributions of our review to the existing body of literature.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems