Dose distribution comparison using image registration principles

Meryeme Bellahsaouia , Ibtissam Zidouh , Ouadie Kabach , Wafae Chfeq , Assia Arctout , Taher Elkhoukhi , Elmahjoub Chakir
{"title":"Dose distribution comparison using image registration principles","authors":"Meryeme Bellahsaouia ,&nbsp;Ibtissam Zidouh ,&nbsp;Ouadie Kabach ,&nbsp;Wafae Chfeq ,&nbsp;Assia Arctout ,&nbsp;Taher Elkhoukhi ,&nbsp;Elmahjoub Chakir","doi":"10.1016/j.nucana.2025.100170","DOIUrl":null,"url":null,"abstract":"<div><div>Radiotherapy relies on accurate dose distribution comparison methods, but current approaches have limitations. This study introduces a novel algorithm based on image registration principles to address these limitations. The algorithm uses a transformation matrix derived from image registration to align an evaluated dose distribution with a reference distribution. This transformation employs multiple steps: detecting keypoints, constructing descriptors, matching keypoints, and estimating an affine transformation matrix. The transformed distribution is then directly comparable to the reference through linear least squares regression. Validation on 174 dose distribution pairs demonstrated robust performance, with bias and precision within clinically acceptable limits. Linearity assessments confirmed consistent behavior across a wide range of dose intensities. Comparisons with gamma analysis showed substantial agreement (Cohen's Kappa: 0.77), while additional metrics highlighted its clinical suitability: precision (0.98), recall (0.95), accuracy (0.94), specificity (0.86), and F1-score (0.96). These results establish the algorithm as a promising complement to gamma analysis, with strong potential for clinical integration.</div></div>","PeriodicalId":100965,"journal":{"name":"Nuclear Analysis","volume":"4 2","pages":"Article 100170"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773183925000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radiotherapy relies on accurate dose distribution comparison methods, but current approaches have limitations. This study introduces a novel algorithm based on image registration principles to address these limitations. The algorithm uses a transformation matrix derived from image registration to align an evaluated dose distribution with a reference distribution. This transformation employs multiple steps: detecting keypoints, constructing descriptors, matching keypoints, and estimating an affine transformation matrix. The transformed distribution is then directly comparable to the reference through linear least squares regression. Validation on 174 dose distribution pairs demonstrated robust performance, with bias and precision within clinically acceptable limits. Linearity assessments confirmed consistent behavior across a wide range of dose intensities. Comparisons with gamma analysis showed substantial agreement (Cohen's Kappa: 0.77), while additional metrics highlighted its clinical suitability: precision (0.98), recall (0.95), accuracy (0.94), specificity (0.86), and F1-score (0.96). These results establish the algorithm as a promising complement to gamma analysis, with strong potential for clinical integration.
基于图像配准原理的剂量分布比较
放射治疗依赖于精确的剂量分布比较方法,但目前的方法有局限性。本研究引入一种基于图像配准原理的新算法来解决这些限制。该算法使用图像配准导出的变换矩阵将评估的剂量分布与参考分布对齐。该变换采用多个步骤:检测关键点、构造描述符、匹配关键点和估计仿射变换矩阵。转换后的分布然后通过线性最小二乘回归与参考直接比较。174对剂量分布对的验证显示了稳健的性能,偏差和精度在临床可接受的范围内。线性评估证实了在大剂量强度范围内的一致行为。与伽玛分析的比较显示了大量的一致性(Cohen’s Kappa: 0.77),而其他指标强调了其临床适用性:精密度(0.98)、召回率(0.95)、准确度(0.94)、特异性(0.86)和f1评分(0.96)。这些结果确立了该算法作为伽马分析的一个有希望的补充,具有很强的临床整合潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信