Neera Borkakoti , António J.M. Ribeiro , Janet M. Thornton
{"title":"A structural perspective on enzymes and their catalytic mechanisms","authors":"Neera Borkakoti , António J.M. Ribeiro , Janet M. Thornton","doi":"10.1016/j.sbi.2025.103040","DOIUrl":null,"url":null,"abstract":"<div><div>In this perspective, we analyse the progress made in our knowledge of enzyme sequences, structures and functions in the last 2 years. We review how much new enzyme data have been garnered and annotated, derived from the study of proteins using structural and computational approaches. Recent advances towards capturing ‘Catalysis <em>in silico</em>’ are described, including knowledge and predictions of enzyme structures, their interactions and mechanisms. We highlight the flood of enzyme data, driven by metagenomic sequencing, the improved enzyme data resources, the high coverage in Protein Data Bank of E.C. classes and the AI-driven structure prediction techniques that facilitate the accurate prediction of protein structures. We note the focus on disordered regions in the context of enzyme regulation and specificity and comment on emerging bioinformatic approaches that capture reaction mechanisms computationally for comparing and predicting enzyme mechanisms. We also consider the drivers of progress in this field in the next five years.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"92 ","pages":"Article 103040"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000582","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this perspective, we analyse the progress made in our knowledge of enzyme sequences, structures and functions in the last 2 years. We review how much new enzyme data have been garnered and annotated, derived from the study of proteins using structural and computational approaches. Recent advances towards capturing ‘Catalysis in silico’ are described, including knowledge and predictions of enzyme structures, their interactions and mechanisms. We highlight the flood of enzyme data, driven by metagenomic sequencing, the improved enzyme data resources, the high coverage in Protein Data Bank of E.C. classes and the AI-driven structure prediction techniques that facilitate the accurate prediction of protein structures. We note the focus on disordered regions in the context of enzyme regulation and specificity and comment on emerging bioinformatic approaches that capture reaction mechanisms computationally for comparing and predicting enzyme mechanisms. We also consider the drivers of progress in this field in the next five years.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation