scRCA: A Siamese network-based pipeline for annotating cell types using noisy single-cell RNA-seq reference data

IF 7 2区 医学 Q1 BIOLOGY
Yan Liu , Chen Li , Long-Chen Shen , He Yan , Guo Wei , Robin B. Gasser , Xiaohua Hu , Jiangning Song , Dong-Jun Yu
{"title":"scRCA: A Siamese network-based pipeline for annotating cell types using noisy single-cell RNA-seq reference data","authors":"Yan Liu ,&nbsp;Chen Li ,&nbsp;Long-Chen Shen ,&nbsp;He Yan ,&nbsp;Guo Wei ,&nbsp;Robin B. Gasser ,&nbsp;Xiaohua Hu ,&nbsp;Jiangning Song ,&nbsp;Dong-Jun Yu","doi":"10.1016/j.compbiomed.2025.110068","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate cell type annotation is fundamentally critical for single-cell sequencing (scRNA-seq) data analysis to provide insightful knowledge of tissue-specific cell heterogeneity and cell state transition tracking. Cell type annotation is usually conducted by comparative analysis with known data (i.e., reference) – which contains a presumably accurate representation of cell types. However, this assumption is often problematic, as factors such as human errors in wet-lab experiments and methodological limitations can introduce annotation errors in the reference dataset. As current pipelines for single-cell transcriptomic analysis do not adequately consider this challenge, there is a major demand for constructing a computational pipeline that achieves high-quality cell type annotation using reference datasets containing inherent errors (referred to as “noise” in this study). Here, we built a Siamese network-based pipeline, termed scRCA, to accurately annotate cell types based on noisy reference data. To help users evaluate the reliability of scRCA annotations, an interpreter was also developed to explore the factors underlying the model's predictions. Our experiments demonstrate that, across 14 datasets, scRCA outperformed other widely adopted reference-based methods for cell type annotation. Using an independent dataset of four multiple myeloma patients, we further illustrated that scRCA can distinguish cancerous cells based on gene expression levels and identify genes closely associated with multiple myeloma through scRCA's interpretable module, providing significant information for subsequent clinical treatments. With these advancements, we anticipate that scRCA will serve as a practical reference-based approach for accurate annotating cell type annotation.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"190 ","pages":"Article 110068"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525004196","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate cell type annotation is fundamentally critical for single-cell sequencing (scRNA-seq) data analysis to provide insightful knowledge of tissue-specific cell heterogeneity and cell state transition tracking. Cell type annotation is usually conducted by comparative analysis with known data (i.e., reference) – which contains a presumably accurate representation of cell types. However, this assumption is often problematic, as factors such as human errors in wet-lab experiments and methodological limitations can introduce annotation errors in the reference dataset. As current pipelines for single-cell transcriptomic analysis do not adequately consider this challenge, there is a major demand for constructing a computational pipeline that achieves high-quality cell type annotation using reference datasets containing inherent errors (referred to as “noise” in this study). Here, we built a Siamese network-based pipeline, termed scRCA, to accurately annotate cell types based on noisy reference data. To help users evaluate the reliability of scRCA annotations, an interpreter was also developed to explore the factors underlying the model's predictions. Our experiments demonstrate that, across 14 datasets, scRCA outperformed other widely adopted reference-based methods for cell type annotation. Using an independent dataset of four multiple myeloma patients, we further illustrated that scRCA can distinguish cancerous cells based on gene expression levels and identify genes closely associated with multiple myeloma through scRCA's interpretable module, providing significant information for subsequent clinical treatments. With these advancements, we anticipate that scRCA will serve as a practical reference-based approach for accurate annotating cell type annotation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信