Viktor R. Paczona , Zoltán Végváry , Gyöngyi Kelemen , Ágnes Dobi , Emőke Borzási , Linda Varga , Adrienne Cserháti , Angéla Csomor , Bence Radics , Sándor Dósa , Márton Balázsfi , Emese Fodor , Ferenc Borzák , Árpád Puskás , Zoltán Varga , Judit Oláh , Katalin Hideghéty
{"title":"Magnetic resonance imaging in glioblastoma radiotherapy − beyond treatment adaptation","authors":"Viktor R. Paczona , Zoltán Végváry , Gyöngyi Kelemen , Ágnes Dobi , Emőke Borzási , Linda Varga , Adrienne Cserháti , Angéla Csomor , Bence Radics , Sándor Dósa , Márton Balázsfi , Emese Fodor , Ferenc Borzák , Árpád Puskás , Zoltán Varga , Judit Oláh , Katalin Hideghéty","doi":"10.1016/j.phro.2025.100754","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Purpose</h3><div>The treatment of glioblastoma remains a challenging task for modern radiation oncology. Adaptive radiotherapy potentially improves local control and reduces toxicity to healthy brain tissue. The purpose of the study was to examine the safety of adaptive radiotherapy in glioblastoma, using a margin-reduction approach based on an interim magnetic resonance image (MRI). Furthermore, it aimed to identify radiomorphological features that may correlate with disease outcome.</div></div><div><h3>Materials and Methods</h3><div>108 glioblastoma patients receiving standard chemoradiotherapy underwent repeated MRI after 40 Gy. The images were compared to the pre-radiotherapy MRI, based on the following criteria: midline shift, perifocal edema, contrast enhancement, ventricular compression, new lesion outside the radiation field, gross tumor volume (GTV) and planning target volume (PTV) size. Target volumes were adjusted by taking into consideration the new intracranial conditions and the remaining 20 Gy was delivered. Statistical analysis consisted of the comparison of the radiomorphological features to overall and progression free survival.</div></div><div><h3>Results</h3><div>Increased or unchanged contrast enhancement (HR: 2.11 and 1.18 consecutively) and ventricular compression (HR: 13.58 and 2.53) on the interim MRI resulted in significantly poorer survival. GTV size (initial: 61.4 [3.8–170.9], adapted: 45.3 [0–206.8] cm3) reduction (absolute: −16.2 [-115.3–115.5] cm3, relative: −24.5 [-100–258.9] %) also had demonstrable impact on survival. Changes in PTV, however, did not significantly correlate with survival.</div></div><div><h3>Conclusions</h3><div>By reducing PTV based on an interim MRI, we achieved substantial sparing of critical normal tissues, without compromising survival. The established evaluation categories can facilitate the systematic review of interim MRI findings.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100754"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose
The treatment of glioblastoma remains a challenging task for modern radiation oncology. Adaptive radiotherapy potentially improves local control and reduces toxicity to healthy brain tissue. The purpose of the study was to examine the safety of adaptive radiotherapy in glioblastoma, using a margin-reduction approach based on an interim magnetic resonance image (MRI). Furthermore, it aimed to identify radiomorphological features that may correlate with disease outcome.
Materials and Methods
108 glioblastoma patients receiving standard chemoradiotherapy underwent repeated MRI after 40 Gy. The images were compared to the pre-radiotherapy MRI, based on the following criteria: midline shift, perifocal edema, contrast enhancement, ventricular compression, new lesion outside the radiation field, gross tumor volume (GTV) and planning target volume (PTV) size. Target volumes were adjusted by taking into consideration the new intracranial conditions and the remaining 20 Gy was delivered. Statistical analysis consisted of the comparison of the radiomorphological features to overall and progression free survival.
Results
Increased or unchanged contrast enhancement (HR: 2.11 and 1.18 consecutively) and ventricular compression (HR: 13.58 and 2.53) on the interim MRI resulted in significantly poorer survival. GTV size (initial: 61.4 [3.8–170.9], adapted: 45.3 [0–206.8] cm3) reduction (absolute: −16.2 [-115.3–115.5] cm3, relative: −24.5 [-100–258.9] %) also had demonstrable impact on survival. Changes in PTV, however, did not significantly correlate with survival.
Conclusions
By reducing PTV based on an interim MRI, we achieved substantial sparing of critical normal tissues, without compromising survival. The established evaluation categories can facilitate the systematic review of interim MRI findings.