Gain-analytical equations generalized for FOPID controllers — An application with DC–DC power converters

Luís Felipe da S.C. Pereira , Anderson S. Volpato , Edson Antonio Batista , Moacyr A.G. de Brito , Ruben B. Godoy , João O.P. Pinto , Leon M. Tolbert
{"title":"Gain-analytical equations generalized for FOPID controllers — An application with DC–DC power converters","authors":"Luís Felipe da S.C. Pereira ,&nbsp;Anderson S. Volpato ,&nbsp;Edson Antonio Batista ,&nbsp;Moacyr A.G. de Brito ,&nbsp;Ruben B. Godoy ,&nbsp;João O.P. Pinto ,&nbsp;Leon M. Tolbert","doi":"10.1016/j.prime.2025.100967","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents algebraic formulations for determining the gains of a fractional-order PID (FOPID) regulator, with attention to gain crossover frequency, phase margin, and robustness against gain variations (iso-damping). The differential evolution (DE) algorithm is employed for optimal tuning of fractional-order values, aligned with FOPID gain parameters. FPGA-in-the-loop simulations for Buck and DC–DC Boost converters are conducted to validate the DE-tuned FOPID controllers, optimized using the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and compared to MATLAB-Simulink simulations. The approach introduces a key innovation: disaggregating the FOPID equation for memory efficiency. Simulations and experiments demonstrate the controller’s precision in setpoint tracking and resilience to load and input voltage variations in Buck and DC–DC Boost converters, with effective damping of load disturbances. A test bench validated the proposed method, which was also compared to conventional PID, Type 3, and PIDD2-IMC controllers. While the proposed FOPID controller performed better in the presented results, a conclusive comparison could not be drawn due to unequal tuning efforts. Future work will focus on a more thorough comparison of controllers.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"12 ","pages":"Article 100967"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671125000749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents algebraic formulations for determining the gains of a fractional-order PID (FOPID) regulator, with attention to gain crossover frequency, phase margin, and robustness against gain variations (iso-damping). The differential evolution (DE) algorithm is employed for optimal tuning of fractional-order values, aligned with FOPID gain parameters. FPGA-in-the-loop simulations for Buck and DC–DC Boost converters are conducted to validate the DE-tuned FOPID controllers, optimized using the L2 norm and compared to MATLAB-Simulink simulations. The approach introduces a key innovation: disaggregating the FOPID equation for memory efficiency. Simulations and experiments demonstrate the controller’s precision in setpoint tracking and resilience to load and input voltage variations in Buck and DC–DC Boost converters, with effective damping of load disturbances. A test bench validated the proposed method, which was also compared to conventional PID, Type 3, and PIDD2-IMC controllers. While the proposed FOPID controller performed better in the presented results, a conclusive comparison could not be drawn due to unequal tuning efforts. Future work will focus on a more thorough comparison of controllers.
FOPID控制器的广义增益解析方程-在DC-DC功率变换器中的应用
本研究提出了用于确定分数阶PID (FOPID)调节器增益的代数公式,并关注增益交叉频率、相位裕度和对增益变化(等阻尼)的鲁棒性。采用差分进化(DE)算法对分数阶值进行最优调谐,并与FOPID增益参数对齐。对Buck和DC-DC Boost转换器进行了fpga环内仿真,以验证非调谐FOPID控制器,并使用L2范数进行了优化,并与MATLAB-Simulink仿真进行了比较。该方法引入了一个关键的创新:分解内存效率的FOPID方程。仿真和实验表明,该控制器在Buck和DC-DC Boost变换器中具有精确的设定值跟踪和对负载和输入电压变化的弹性,并能有效地抑制负载干扰。试验台验证了该方法,并将其与传统PID、Type 3和PIDD2-IMC控制器进行了比较。虽然所提出的FOPID控制器在给出的结果中表现更好,但由于调谐努力不均匀,无法得出结论性的比较。未来的工作将集中于对控制器进行更彻底的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信