Ying Zhang;Haoran Qi;Shuaishuai Ge;Tingyi Zhao;Jinchao Chen;Tao You;Yantao Lu;Chenglie Du
{"title":"Vision-Based Geometric Model for Accurate and Fast Lane Recognition in Complex Conditions","authors":"Ying Zhang;Haoran Qi;Shuaishuai Ge;Tingyi Zhao;Jinchao Chen;Tao You;Yantao Lu;Chenglie Du","doi":"10.1109/TITS.2025.3543809","DOIUrl":null,"url":null,"abstract":"Lane recognition is an important component of autonomous driving system and advanced driving assistance system (ADAS) for intelligent vehicles. In complex driving conditions, accurate and fast lane recognition is a challenging issue. In this paper, a vision-based geometric model (VBGM) is proposed for accurate and fast lane recognition in complex conditions. The framework of the VBGM includes an image preprocessing stage and a lane recognition stage. In the image preprocessing stage, the region of interest (ROI) is extracted from the original image, and the original image is transformed into an undistorted greyscale image. In the lane recognition stage, the lane contour is first extracted using the Roberts operator. Then, to accurately and quickly recognize the lane marking, a lane recognition coordinate system (LRCS) and a rotational LRCS (R-LRCS) are constructed. The distracting contours in abnormal regions are padded based on the LRCS using a contextual frames correlation (CFC) strategy, and the midpoints of the lane contour are identified based on the R-LRCS. Finally, an adaptive-order polynomial fitting model is built to fit the lane marking according to the midpoints in the LRCS. To evaluate the effectiveness of the proposed method, two state-of-the-art methods are selected for comparison. The comparative results indicate that the proposed method possesses a higher recognition rate and speed for lane recognition in complex conditions.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 4","pages":"4692-4704"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10907780/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Lane recognition is an important component of autonomous driving system and advanced driving assistance system (ADAS) for intelligent vehicles. In complex driving conditions, accurate and fast lane recognition is a challenging issue. In this paper, a vision-based geometric model (VBGM) is proposed for accurate and fast lane recognition in complex conditions. The framework of the VBGM includes an image preprocessing stage and a lane recognition stage. In the image preprocessing stage, the region of interest (ROI) is extracted from the original image, and the original image is transformed into an undistorted greyscale image. In the lane recognition stage, the lane contour is first extracted using the Roberts operator. Then, to accurately and quickly recognize the lane marking, a lane recognition coordinate system (LRCS) and a rotational LRCS (R-LRCS) are constructed. The distracting contours in abnormal regions are padded based on the LRCS using a contextual frames correlation (CFC) strategy, and the midpoints of the lane contour are identified based on the R-LRCS. Finally, an adaptive-order polynomial fitting model is built to fit the lane marking according to the midpoints in the LRCS. To evaluate the effectiveness of the proposed method, two state-of-the-art methods are selected for comparison. The comparative results indicate that the proposed method possesses a higher recognition rate and speed for lane recognition in complex conditions.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.