A general formalism for determining the unburnt composition in multi-stream species transport-based CFD simulations

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS
Simone Castellani , Gianmarco Lemmi , Pier Carlo Nassini , Roberto Meloni , Antonio Andreini
{"title":"A general formalism for determining the unburnt composition in multi-stream species transport-based CFD simulations","authors":"Simone Castellani ,&nbsp;Gianmarco Lemmi ,&nbsp;Pier Carlo Nassini ,&nbsp;Roberto Meloni ,&nbsp;Antonio Andreini","doi":"10.1016/j.combustflame.2025.114128","DOIUrl":null,"url":null,"abstract":"<div><div>The imperative to decarbonise combustion necessitates technical solutions that increasingly rely on the concurrent utilisation of different fuels and/or oxidisers. The complexity of the reactive mixture compositions in such scenarios poses additional challenges from a CFD modelling perspective. While species transport models can generally describe multi-stream combustion problems directly, the definition of turbulence-chemistry interaction closures or the proper comprehension of combustion regimes often requires the reconstruction of the non-reactive mixing field. This work proposes a general comprehensive formalism for determining the unburnt composition in multi-stream combustion environments. The method relies on the elemental mass fraction conservation for the definition of a linear system that can be solved at runtime to retrieve the local unburnt mixture composition. The introduced formalism allows to assess the number of auxiliary stream-tracking scalars <span><math><mrow><mi>a</mi><mo>−</mo><mi>p</mi><mi>r</mi><mi>i</mi><mi>o</mi><mi>r</mi><mi>i</mi></mrow></math></span>, thereby minimising computational efforts and effectively enabling the use of the inherent information within the set of transported species. The study presents an application example where a dual-fuel turbulent combustion scenario is numerically investigated. In this context, the consistency of the method with respect to the use of passive scalars has been discussed with and without the species equi-diffusivity assumption. A procedure for the <span><math><mrow><mi>a</mi><mo>−</mo><mi>p</mi><mi>r</mi><mi>i</mi><mi>o</mi><mi>r</mi><mi>i</mi></mrow></math></span> estimation of the error introduced by the species preferential diffusion has been proposed, providing insights about the expected uncertainty on the predicted mixture composition and the respective flame properties.</div><div><strong>Novelty and Significance Statement</strong></div><div>The determination of the non-reactive mixing field is crucial for understanding reactive CFD simulations based on species transport. Additionally, in turbulent combustion models, knowing the unburnt composition is often a pivotal requirement for the model closure. While recalculated mixture fractions can determine the unburnt composition in dual-stream problems, this approach is inappropriate for multi-stream problems. This research introduces a novel generalised method for determining unburnt mixture composition in multi-stream combustion scenarios using CFD calculations based on species transport. The proposed method minimises the need for additional passive scalars by efficiently utilising existing information from the solved equations and boundary conditions, leveraging elemental mass fraction conservation.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"276 ","pages":"Article 114128"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001021802500166X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The imperative to decarbonise combustion necessitates technical solutions that increasingly rely on the concurrent utilisation of different fuels and/or oxidisers. The complexity of the reactive mixture compositions in such scenarios poses additional challenges from a CFD modelling perspective. While species transport models can generally describe multi-stream combustion problems directly, the definition of turbulence-chemistry interaction closures or the proper comprehension of combustion regimes often requires the reconstruction of the non-reactive mixing field. This work proposes a general comprehensive formalism for determining the unburnt composition in multi-stream combustion environments. The method relies on the elemental mass fraction conservation for the definition of a linear system that can be solved at runtime to retrieve the local unburnt mixture composition. The introduced formalism allows to assess the number of auxiliary stream-tracking scalars apriori, thereby minimising computational efforts and effectively enabling the use of the inherent information within the set of transported species. The study presents an application example where a dual-fuel turbulent combustion scenario is numerically investigated. In this context, the consistency of the method with respect to the use of passive scalars has been discussed with and without the species equi-diffusivity assumption. A procedure for the apriori estimation of the error introduced by the species preferential diffusion has been proposed, providing insights about the expected uncertainty on the predicted mixture composition and the respective flame properties.
Novelty and Significance Statement
The determination of the non-reactive mixing field is crucial for understanding reactive CFD simulations based on species transport. Additionally, in turbulent combustion models, knowing the unburnt composition is often a pivotal requirement for the model closure. While recalculated mixture fractions can determine the unburnt composition in dual-stream problems, this approach is inappropriate for multi-stream problems. This research introduces a novel generalised method for determining unburnt mixture composition in multi-stream combustion scenarios using CFD calculations based on species transport. The proposed method minimises the need for additional passive scalars by efficiently utilising existing information from the solved equations and boundary conditions, leveraging elemental mass fraction conservation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信