Parisa Khoshvaght , Jawad Tanveer , Amir Masoud Rahmani , May Altulyan , Yazeed Alkhrijah , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Mokhtar Mohammadi , Mehdi Hosseinzadeh
{"title":"Computational intelligence-based routing schemes in flying ad-hoc networks (FANETs): A review","authors":"Parisa Khoshvaght , Jawad Tanveer , Amir Masoud Rahmani , May Altulyan , Yazeed Alkhrijah , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Mokhtar Mohammadi , Mehdi Hosseinzadeh","doi":"10.1016/j.vehcom.2025.100913","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the rapid development of wireless technologies, low-priced equipment, advances in networking protocols, and access to modern communication, electrical, and sensing technologies have led to the evolution of flying ad hoc networks (FANETs). However, the high movement of unmanned aerial vehicles (UAVs) in these networks causes iterated failures of communication links and constant changes in network topology. These features challenge the design of a proper routing protocol in FANETs. Today, computational intelligence (CI) techniques are rapidly developing as a mighty and intelligent computing model. This promising technology can be used to improve various applied areas, especially routing in FANETs. This paper examines and assesses various CI-based routing techniques in FANETs. Accordingly, this paper introduces a classification of CI-based routing protocols for FANETs. This categorization includes three groups: learning system-based routing methods (including artificial neural networks, reinforcement learning, and deep reinforcement learning), fuzzy-based routing schemes, and bio-inspired routing schemes (evolutionary algorithms and swarm intelligence). Subsequently, based on the offered classification, the most recent CI-based routing methods and their key features are outlined. Ultimately, the opportunities and challenges in this area have been mentioned to help researchers familiarize themselves with future research directions in CI-based routing algorithms for FANETs and work toward improving these methods in such networks.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100913"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000403","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the rapid development of wireless technologies, low-priced equipment, advances in networking protocols, and access to modern communication, electrical, and sensing technologies have led to the evolution of flying ad hoc networks (FANETs). However, the high movement of unmanned aerial vehicles (UAVs) in these networks causes iterated failures of communication links and constant changes in network topology. These features challenge the design of a proper routing protocol in FANETs. Today, computational intelligence (CI) techniques are rapidly developing as a mighty and intelligent computing model. This promising technology can be used to improve various applied areas, especially routing in FANETs. This paper examines and assesses various CI-based routing techniques in FANETs. Accordingly, this paper introduces a classification of CI-based routing protocols for FANETs. This categorization includes three groups: learning system-based routing methods (including artificial neural networks, reinforcement learning, and deep reinforcement learning), fuzzy-based routing schemes, and bio-inspired routing schemes (evolutionary algorithms and swarm intelligence). Subsequently, based on the offered classification, the most recent CI-based routing methods and their key features are outlined. Ultimately, the opportunities and challenges in this area have been mentioned to help researchers familiarize themselves with future research directions in CI-based routing algorithms for FANETs and work toward improving these methods in such networks.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.