Computational intelligence-based routing schemes in flying ad-hoc networks (FANETs): A review

IF 5.8 2区 计算机科学 Q1 TELECOMMUNICATIONS
Parisa Khoshvaght , Jawad Tanveer , Amir Masoud Rahmani , May Altulyan , Yazeed Alkhrijah , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Mokhtar Mohammadi , Mehdi Hosseinzadeh
{"title":"Computational intelligence-based routing schemes in flying ad-hoc networks (FANETs): A review","authors":"Parisa Khoshvaght ,&nbsp;Jawad Tanveer ,&nbsp;Amir Masoud Rahmani ,&nbsp;May Altulyan ,&nbsp;Yazeed Alkhrijah ,&nbsp;Mohammad Sadegh Yousefpoor ,&nbsp;Efat Yousefpoor ,&nbsp;Mokhtar Mohammadi ,&nbsp;Mehdi Hosseinzadeh","doi":"10.1016/j.vehcom.2025.100913","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the rapid development of wireless technologies, low-priced equipment, advances in networking protocols, and access to modern communication, electrical, and sensing technologies have led to the evolution of flying ad hoc networks (FANETs). However, the high movement of unmanned aerial vehicles (UAVs) in these networks causes iterated failures of communication links and constant changes in network topology. These features challenge the design of a proper routing protocol in FANETs. Today, computational intelligence (CI) techniques are rapidly developing as a mighty and intelligent computing model. This promising technology can be used to improve various applied areas, especially routing in FANETs. This paper examines and assesses various CI-based routing techniques in FANETs. Accordingly, this paper introduces a classification of CI-based routing protocols for FANETs. This categorization includes three groups: learning system-based routing methods (including artificial neural networks, reinforcement learning, and deep reinforcement learning), fuzzy-based routing schemes, and bio-inspired routing schemes (evolutionary algorithms and swarm intelligence). Subsequently, based on the offered classification, the most recent CI-based routing methods and their key features are outlined. Ultimately, the opportunities and challenges in this area have been mentioned to help researchers familiarize themselves with future research directions in CI-based routing algorithms for FANETs and work toward improving these methods in such networks.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100913"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000403","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the rapid development of wireless technologies, low-priced equipment, advances in networking protocols, and access to modern communication, electrical, and sensing technologies have led to the evolution of flying ad hoc networks (FANETs). However, the high movement of unmanned aerial vehicles (UAVs) in these networks causes iterated failures of communication links and constant changes in network topology. These features challenge the design of a proper routing protocol in FANETs. Today, computational intelligence (CI) techniques are rapidly developing as a mighty and intelligent computing model. This promising technology can be used to improve various applied areas, especially routing in FANETs. This paper examines and assesses various CI-based routing techniques in FANETs. Accordingly, this paper introduces a classification of CI-based routing protocols for FANETs. This categorization includes three groups: learning system-based routing methods (including artificial neural networks, reinforcement learning, and deep reinforcement learning), fuzzy-based routing schemes, and bio-inspired routing schemes (evolutionary algorithms and swarm intelligence). Subsequently, based on the offered classification, the most recent CI-based routing methods and their key features are outlined. Ultimately, the opportunities and challenges in this area have been mentioned to help researchers familiarize themselves with future research directions in CI-based routing algorithms for FANETs and work toward improving these methods in such networks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vehicular Communications
Vehicular Communications Engineering-Electrical and Electronic Engineering
CiteScore
12.70
自引率
10.40%
发文量
88
审稿时长
62 days
期刊介绍: Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier. The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications: Vehicle to vehicle and vehicle to infrastructure communications Channel modelling, modulating and coding Congestion Control and scalability issues Protocol design, testing and verification Routing in vehicular networks Security issues and countermeasures Deployment and field testing Reducing energy consumption and enhancing safety of vehicles Wireless in–car networks Data collection and dissemination methods Mobility and handover issues Safety and driver assistance applications UAV Underwater communications Autonomous cooperative driving Social networks Internet of vehicles Standardization of protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信